

This publication was prepared for the

Software Program Managers Network
4600 North Fairfax Drive, Suite 302
Arlington, VA 22203

The ideas and findings in this publication should not be
construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

Norm Brown
Director, Software Program Managers Network

Copyright © 1998 by Computers & Concepts Associates

This work was created by Computers & Concepts Associates in
the performance of Space and Naval Warfare Systems Command
(SPAWAR) Contract Number N00039-94-C-0153 for the
operation of the Software Program Managers
Network (SPMN).

THE PROGRAM MANAGER’S
GUIDE TO

SOFTWARE ACQUISITION
BEST PRACTICES

VERSION 2.31

P R E F A C E

iii

The Department of Defense and its
contractors have arrived at a software
crisis. Far too many large-scale software
projects have become unaffordable and
unable to deliver needed quality,
reliability, and capability within the
required time frame. Their outputs are
not predictable. Their processes are little
more than chaotic and do not effectively
utilize the kinds of disciplines necessary
to achieve success. They have not yet
taken advantage of the kinds of practices
used to effectively manage large-scale
hardware projects.

The Software Acquisition Best Practices
Initiative was established to bring about
substantial improvements in productivity,
quality, timeliness, and user satisfaction
by implementing Best Practices as a new
foundation for DoD software
management. Two of the Initiative’s
purposes are: focusing the Defense
acquisition community on employing
effective high-leverage software
acquisition management practices; and
enabling managers to exercise flexibility
in implementing practices within
disparate program cultures. Intended for
both government software program
managers and their industry counterparts,
this book is a primary component of the
Initiative and has been structured to
support both these purposes.

Solutions are taken from successful
programs—practices which when
effectively implemented, given competent

staff, will help bring order, predictability,
and higher levels of productivity and
quality. Each practice includes key
applicability factors, enabling adaptation
to particular situations and environments.
In addition, the Software Program
Managers Network is preparing more
detailed information and implementation
examples.

These practices are focused upon
effective management processes,
techniques for finding defects as they
occur, eliminating excessive and
unnecessary costs, increasing productivity,
and other beneficial effects. The Airlie
Software Council—nineteen industry
leaders, authors, and visionaries—and
other industry experts and consultants are
convinced that projects effectively
utilizing the Principal Best Practices and
other appropriate Best Practices will
achieve significant cost reductions while
simultaneously increasing quality and
reliability.

The Airlie Software Council believes the
nine Principal Best Practices are
applicable to all large-scale projects (i.e.,
projects relying on the full-time efforts of
twelve or more people annually). The
Best Practices should be used as
appropriate according to the particular
circumstances and environment of a given
project. All practices are generally
applicable to both government and
industry projects, and to nearly all
domains.

v

These practices have been through a thorough
review and comment process. Both the initial set of
Candidate Practices and the later set of Draft
Practices were widely distributed for comment.
They have been provided to DoD Program
Executive Offices, Warfare Centers, industry
associations, government and industry participants,
and to anyone requesting them as a result of the
several best practice presentations at Tri-Ada, the
Software Technology Conference, and elsewhere.
They have also been made available on the
Network’s World Wide Web site. As a result, we
have received many useful comments. Nearly all
recommendations for more clearly articulating a
given practice were incorporated. Other
recommendations included: conducting additional
studies; gathering and including additional
information that supports or relates to each practice;
providing exact directions on practice use for
different program sizes or phase; and suggested
major restructuring. These recommendations have
all been carefully considered and included in
planning for future improvement of this book. The
practices herein are a “living set,” and are intended
to be refined over time. We would greatly
appreciate receiving your comments and suggestions
(preferably by e-mail). In the event that a program
manager desires additional information, the
Network will provide source materials and access to
experts.

These practices are termed “Best Practices” not
because they have been intensively studied and
analytically proven to be “best,” but simply because
they are practices used by, and considered critical to,
successful software projects. This is not presumed
to be an exhaustive set, or to say that there may not

be other, perhaps even better, practices; however, the
practices presented here will go a long way to
engendering successful software development and
maintenance.

This book has been produced by the Initiative under
the leadership and funding of the Software Program
Managers Network, and was made possible only
through the dedicated efforts of some 190
concerned, committed, and experienced software
managers, practitioners, leaders, and experts in
industry and government that comprised the seven
Issue Panels, the Program Managers Panel, and the
Airlie Software Council (listed in Appendix D).

The nation’s software industry owes a debt of
gratitude to Noel Longuemare, Principal Deputy
Under Secretary of Defense (A&T), and Emmett
Paige Jr., Assistant Secretary of Defense (C3I), for
establishing the Initiative and for their commitment
to implementing major improvements in software
development and maintenance of large-scale
software systems. Special thanks are also due to
Gene Porter, formerly DoD’s Director of
Acquisition Program Integration, for focusing the
DoD acquisition community on the need for
identification and effective use of software
acquisition Best Practices.

Norm Brown
Coordinator,
Software Acquisition Best
Practices Initiative

vii

P R E F A C E i i i

C H A P T E R 1

Software Acquisition Best Practices 1

C H A P T E R 2

Project Control Panel . 7

C H A P T E R 3

Project Analyzer . 1 7

C H A P T E R 4

Quantitative Targets . 2 5

C H A P T E R 5

Principal Best Practices . 3 3

C H A P T E R 6

Best Practices . 4 9

C H A P T E R 7

Project Caveats . 1 0 5

Introduction to

G L O S S A R Y . 109

A P P E N D I X A

Best Practices Initiative Background 1 1 8

A P P E N D I X B

Best Practices Contracting Documentation 1 2 0

A P P E N D I X C

Project Control Panel “Abba Chart” (Gauge 6) . . . 1 2 2

A P P E N D I X D

Best Practices Initiative Contributors 1 2 4

B I B L I O G R A P H Y 1 3 1

I N D E X. 1 3 7

ix

THE PROGRAM MANAGER’S
GUIDE TO

SOFTWARE ACQUISITION
BEST PRACTICES

VERSION 2.31

1

C H A P T E R 1

INTRODUCTION TO SOFTWARE
ACQUIS IT ION BEST PRACT ICES

You know the problems. Headlines
proclaim them: big cost overruns,
schedule slips, and dramatic
performance deficiencies in weapon,
C4I, and automated information
systems—virtually all due to software
problems. In 1987, the Defense
Science Board concluded that these
software acquisition problems came not
from technical difficulties, but from
poor management. Since 1987, the
situation has gotten worse, not better.
Software has gotten bigger, more
complex, and more expensive, and
ineffective management is still the root
cause of much that afflicts software
acquisition.

Nowhere is successful software
program management more critical
than in the Department of Defense.
The Assistant Secretary of Defense for
Command, Control, Communications
and Intelligence estimates annual DoD
software maintenance and development
expenditures to be $42 billion. Anyone
associated with government large-scale
software program management knows
how rarely a clear program success
occurs.

This book provides winning strategies
used by successful government and
industry software program managers—
practices and tools that, if utilized, will
enable the effective management of
large-scale software programs. In the
following chapters, six key components

of successful management are
examined:

• The PROJECT CONTROL
PANEL displays project progress
indications and warnings to help
gauge how well the project is
running.

• The PROJECT ANALYZER
consists of diagnostic questions
about project status, and helps
determine whether further
evaluation is called for.

• QUANTITATIVE TARGETS
provide hard numbers for
production goals, and warnings of
possible project malpractice.

• PRINCIPAL BEST PRACTICES
are essential to successfully manage
software development and
maintenance projects in industry
and government.

• BEST PRACTICES have been
used successfully in industry and
government software programs,
and are recommended for
consideration.

• PROJECT CAVEATS are hard-
learned lessons from industry and
government software project
experience.

In order for the software program
manager to maintain control over
ever-changing program conditions,

INTRODUCTION TO SOFTWARE ACQUISITION
PROGRAM MANAGEMENT

3

continuing status inputs must be received from every
key project element. Just as a pilot would not
become airborne without instruments to monitor
essential aircraft functions, a program manager
should not attempt to manage without effective tools
to monitor and control program progress. Effective
management of software development and
maintenance requires close attention to the latest
information on major project issues affecting the
bottom line—productivity, quality, timeliness, and
user satisfaction.

A conceptual framework of software acquisition
management is given in Figure 1.1.

INTRODUCTION TO SOFTWARE ACQUISITION
PROGRAM MANAGEMENT

FI G U R E 1.1 SO F T WA R E AC Q U I S I T I O N PR O G R A M MA N A G E M E N T EN V I R O N M E N T

5

7

C H A P T E R 2

PROJECT CONTROL PA N E L

The Project Control Panel is both a
concept and a tool for visualizing and
monitoring the condition of a project
and predicting its future course. The
Panel facilitates the entire project team’s
quick determination of the status of their
project, and identification of areas for
improvement. The Control Panel was
designed to help project managers keep
their projects on course when data for
the Control Panel is updated regularly.
When gauges are not in acceptable
ranges, they indicate to management that
potential trouble lies ahead. The
Control Panel displays information on
progress, that including: productivity and
completion, change, staff, risk, and
quality. These criteria were chosen to
cover the primary areas that every
project manager needs to track in order
to avoid failure on large-scale software
development projects.

PROJECT CONTROL PA N E L

FI G U R E 2.1 PR O J E C T CO N T R O L PA N E L

1 0 0

1 0 0

1 0 0

1 0 0

1 Cumulative Earned Value
d e l i v e red (BCWP) compared
with total budgeted cost
(BAC) and cumulative
planned value (BCWS).

2 Cumulative actual cost (ACWP)
c o m p a red with total estimated cost at
completion (EAC).

3 C u rrent re p o rting time
period compared with total
periods budgeted.

4 CPI = B C W P
A C W P

5 TCPI = BAC – BCWP
EAC – ACWP

6 Total program perf o rmance
e fficiency chart .

7 Number of tasks due,
completed on time, completed
late, and total overdue tasks
last month.

8 Cumulative number of tasks planned and
completed over time.

9 # of modified CIs re c h e c k e d
into CM last month

of CIs in CM system

10 # of new and changed
re q u i rements last month

of original re q u i re m e n t s

11 # of staff voluntarily
leaving last month

of staff at beginning of month

12 # of overtime hours last month
of base hours

13 Each risk plotted in regions of high-,
moderate-, and low-risk exposure .

14 Risk re s e rve dollars:
Total cost risk exposures
c o m p a red with cost risk re s e rv e .

Risk re s e rve time:
Total schedule risk exposures compare d
with schedule risk re s e rv e .

15 Metrics Problem – project metrics
w a rning indicator

Anonymous channel warnings -- bad
news from staff .

16 Total # of severity 1 & 2
defects that are open and closed.

PROGRESS:

The EARNED VALUE or Budgeted
Cost of Work Performed
(BCWP) gauge shows the
cumulative Earned Value delivered
to date. The cumulative Earned
Value indicator shows the amount
of work that has been completed
on the project. This metric is
based on the notion that, at the
beginning of a project, every task
is allocated a budget which then
becomes its planned value. As
work is completed on a task, its
budget (or planned value) is
“earned” as a quantitative measure
of progress. The maximum value
on the gauge is the total original
budget for the project, which is
known as Budget at Completion
(BAC). Note that BAC is
constant for the life of the project,
and represents the total value of
work to be performed. The
triangle indicator shows the
cumulative planned value or
Budgeted Cost of Work
Scheduled (BCWS), which is the
total value of work that was
originally scheduled for
completion by the end of this
reporting period.

The cumulative Earned Value
(BCWP), cumulative planned

value (BCWS), and BAC
indicators can be compared with
one another to make critical
observations about progress on the
project. By comparing the BCWP
indicator with the BCWS
indicator, you can determine if the
project is ahead of or behind
schedule. This is a good measure
of schedule deviation because it
takes into account the amount of
work that was planned to be
completed.

Establishing a planned value and a
completion criterion for each task
before work begins is critical for
using the Earned Value metric
successfully to measure progress.
Cumulative Earned Value is the
sum of the planned values for all
completed tasks. The best
completion criteria for a software
task will require that no planned
value credit can be taken until all
work is completed and tested.
These completion criteria are
known as quality gates.

The ACTUAL COST or Actual
Cost of Work Performed
(ACWP) gauge shows the
cumulative actual cost incurred on
the project to date. Estimate at
Completion (EAC) is the
maximum value on this gauge,

PROJECT CONTROL PA N E L

1

2

which represents the current best estimate for
total cost of the project. Note that EAC
might have a different value from BAC in the
above Earned Value gauge because better
total cost estimates can be made as the
project progresses. Therefore EAC may
change for different reporting periods.

By comparing cumulative actual cost (ACWP)
with the cumulative Earned Value (BCWP) in
the above Earned Value gauge, you can
estimate how your project is performing against
its budget. This shows how well the project is
turning actual costs (ACWP) into progress
(BCWP). Although the scales for this gauge
and the Earned Value gauge are the same,
cumulative actual cost can be compared with
BAC to determine project status toward over-
running the original budget, and with EAC to
determine project status toward overrunning
the current estimated total cost.

The ELAPSED TIME gauge shows the end date
for the current reporting period. The SAC
(Schedule at Completion) mark shows the
original scheduled completion date for the
project.

Current time can be compared with SAC to
determine the time remaining in the original
schedule.

The COST PERFORMANCE INDEX (CPI) gauge
shows how efficiently the project team has
t u rned costs into pro g ress to date. It is
calculated by dividing cumulative Earned Va l u e
by the cumulative actual cost (BCWP/ACWP).
It is a historical measure of average pro d u c t i v i t y
over the life of the pro j e c t .

CPI represents how much work was performed
for each dollar spent, or “bang for the buck.”
When CPI has a value of 1.0, the project team
is delivering a dollar of planned work for each
dollar of cost. When CPI is less than 1.0, there
is the potential for a productivity problem. For
example, a CPI of .80 means that you received
80 cents’ worth of planned work for each dollar
you paid in cost. A CPI of less than 1.0 may
indicate that the project team didn’t perform as
well as expected, or that the original budget was
too aggressive for the amount of work to be
performed.

The TO-COMPLETE PERFORMANCE INDEX

(TCPI) gauge shows the future projection of
the average productivity needed to complete
the project within an estimated budget. It is
calculated by dividing the work remaining by
the current estimate of remaining cost
((BAC - BCWP)/(EAC - ACWP)).

The TCPI gauge must be used in conjunction
with the CPI gauge. TCPI should be compared
with CPI to determine how realistic the most
recent estimated total cost (EAC) is for the
project. Note that CPI measures the average
historic productivity to date. If TCPI is greater
than CPI, then the project team is anticipating
an efficiency improvement to make it more
productive. The estimated total cost of the
project (EAC) can therefore be calibrated by
comparing TCPI with CPI. Always question
claims of future productivity improvement that
result in a 20 percent or greater increase in
TCPI over CPI in order to ensure they are
based on sound reasoning. This is especially
true of “silver bullets” like new tools, languages,
or methodologies that may actually decrease

5

11

3

4

productivity due to training and
start-up costs. The redline on this
gauge should be about 20 percent
above the current value of the CPI
gauge to show the relationship and
warning level between the two
gauges.

The ABBA1 CHART, also known as
a Total Program Performance
Efficiency chart, is composed of
four different performance
indicators showing trends in
historic and projected efficiency to
date. The four indicators are:

• TCPI (Gauge 5)
• Completion Efficiency (CE), a

ratio calculated by dividing BAC
by EAC to estimate the
productivity required to
complete the project within a
projected total cost (EAC)

• CPI (Gauge 4)
• Monthly CPI, a ratio calculated

by dividing the monthly Earned
Value by the monthly actual cost
(as opposed to cumulative values
for the CPI calculation)

A more detailed description of this
chart is presented in Appendix C.

QUALITY GATE TASK STATUS THIS

MONTH shows the completion
status of tasks during the current
reporting period. A quality gate is
a predefined completion criterion

for a task. The criterion must be
an objective yes/no indicator that
shows a task has been completed
(see discussion on Gauge 1 above).
The indicators are:

• Total Due is the total number
of tasks scheduled for
completion during the current
reporting period plus any
overdue tasks from previous
periods. This indicates the total
quantity of work required for
the project to keep pace with
the schedule.

• Completed On Time is the
number of tasks originally
scheduled for completion
during the current reporting
period that were completed by
their original scheduled due
date. This number indicates
how well the project is keeping
up with scheduled work.

• Completed Late is the number
of tasks completed late during
the current reporting period.
This number includes those
tasks scheduled for the current
period that were completed late,
as well as any overdue tasks
from previous periods that were
completed in the current period.
The Completed Late number
indicates how well the project is
completing work, even if it is
late according to the original
schedule.

PROJECT CONTROL PA N E L

6

7

1 Named for Wayne Abba of the
Department of Defense.

• Total Overdue is the total number of tasks
for all previous reporting periods that are
overdue by the end of the current reporting
period. This is an indicator of the quantity
of work needed to get the project back on
schedule.

The total number of tasks completed in the
current reporting period is the sum of
Completed On Time and Completed Late.
Total Overdue is equal to Total Due minus
Completed On Time and Completed Late.

The QUALITY GATE TASKS COMPLETED graph
shows the cumulative number of tasks
completed by the end of each reporting
period to date plotted with the cumulative
number of tasks scheduled for completion.

When the number of tasks completed is less than
the number planned, then the horizontal
difference on the time axis is an indicator of the
current schedule slip to date.

CHANGE:

CM (CONFIGURATION MANAGEMENT) CHURN

PER MONTH is calculated by taking the
number of baselined Configuration Items (CIs)
that have been modified and rechecked into
the Configuration Management system over
the last reporting period and dividing it by the
total number of baselined CIs in the system at
the end of the period. It is expressed as a
percentage. A modified CI is one that was
previously in the system, but was reviewed
sometime later and then modified or replaced.

This gauge serves as an indicator of the
architectural soundness of the system. If the
rate of “churn” begins to approach the
2-percent-per-month level, this shows that a lot
of rework is going on, which could point to
deeper problems in the project. A high churn
rate may mean that the original design was not
robust enough. It could also be a symptom of
changing requirements (see Gauge 10), which
could indicate the project is drifting towards
disaster.

REQUIREMENTS CHANGE PER MONTH is
calculated by dividing the number of new,
changed, or deleted requirements specified in
the current reporting period by the total
number of requirements at the end of the
current period. It is expressed as a
percentage. Typical projects experience a
requirements change of 1 percent per month.

Some requirements growth is to be expected,
particularly on large projects. However, a high
rate of requirements change can indicate the
customer is not sure of what is wanted, or the
original requirements definition was poor. A
high rate often predicts disaster for software-
intensive projects.

STAFF:

VOLUNTARY TURNOVER PER MONTH is
calculated by dividing the number of staff
leaving during the current reporting period by
the number of staff at the beginning of the
current period. It is expressed as a
percentage. The target range is less than 2

13

11

108

9

percent per month. A person can
leave the project in a number of
ways, such as by quitting the
organization or requesting
reassignment to another project.

Turnover is an important measure
for risk assessment. Every project
lasting six months or longer should
expect and prepare for some staff
turnover. Each project member who
leaves the team causes a productivity
drop and schedule disruption.
However, bringing on new team
members, regardless of skills and
experience, does not necessarily solve
the problem; they require time to
become familiar with the project
and processes. In addition, a
productive team member will
usually have to devote time to orient
the new hire, thus taking away
additional resources from the
project. Appropriate allowances
should be included in the
productivity resource estimates to
allow for staff turnover.

OVERTIME PER MONTH is
calculated by dividing the overtime
hours by the base working hours
for all project staff in the current
reporting period. It is expressed as
a percentage. The target range is
less than 10 percent. When the
overtime rate approaches 20
percent, the ability of the staff to

respond effectively to crises suffers
significantly.

RISK:

The RISK EXPOSURE chart shows
each risk plotted by its cost
consequence and probability. The
probability is expressed in terms of
occurrences over the life of the
project. The regions on the graph
show where risks fall into areas of
low-, moderate-, or high-risk
exposure.

RISK RESERVE shows the total risk
exposure for cost and schedule
compared with the current cost
and time risk reserves for the
project. Risk exposure for a risk is
calculated by multiplying the
probability by the consequence of
that risk. Although the
consequences (and therefore the
risk exposure) for all risks are not
necessarily independent, a first
approximation to the total cost risk
exposure to the project can be
made by summing the individual
cost risk exposures for all risks.
This same rule holds true for
consequences resulting in a
delayed schedule.

A cost and risk reserve should be
established at the beginning of the
project to deal with unforeseen

PROJECT CONTROL PA N E L

14

13

12

15

problems. The cost and time risk reserve for a
project will change over time as some of this
reserve is used to mitigate the effects of risks
that actually occur and affect the project.

The ME T R I C S PR O B L E M indicator shows that
p roject management has received either a
w a rning or bad news about some of the metrics
on the pro j e c t .

The ANONYMOUS CHANNEL UNRESOLVED

WARNING indicator shows that project
management has received either a warning or
bad news about the actual status of the
project.

An open-project culture in which reporting bad
news is encouraged is conducive to a healthy
project. Warnings from anonymous or known
project personnel should be welcomed and
tracked.

QUALITY:

DEFECTS BY ACTIVITY displays the number of
detected defects open (i.e., yet to be fixed) and
the number of defects closed in each phase of
the project. Defects are problems that, if not
removed, could cause a program to fail or
produce incorrect results. Defects are
generally prioritized by severity level, with
those labeled as numeral 1 being the most
serious.

The quality indicators on this chart help you
answer the question, “What is the quality of the
product right now?”

15

16

17

C H A P T E R 3

P R O J E C T A N A L Y Z E R

P R O J E C T A N A LY Z E R

1. Do you have a current,
credible activity network
supported by a Work
Breakdown Structure (WBS)?

2. Do you have a current,
credible schedule and budget?

3. Do you know what software
you are responsible for
delivering?

4. Can you list the current top
ten project risks?

5. Do you know your schedule
compression percentage?

6. What is the estimated size of
your software deliverable?
How was it derived?

7. Do you know the percentage
of external interfaces that are
not under your control?

8. Does your staff have sufficient
expertise in the key project
domains?

9. Have you identified adequate
staff to allocate to the
scheduled tasks at the
scheduled time?

The Project Analyzer questions provide program managers with a “quick look” at
software project health. The Project Analyzer determines whether key program
elements exist, without which the program is not likely to succeed. If a program
manager cannot answer the following questions about current project status, or must
answer in the negative, the project should be scheduled for immediate review.

1. Do you have a current, credible
activity network supported by a
Work Breakdown Structure (WBS)?

An activity network is the primary means
to organize and allocate work.

• Have you identified your critical path items?

• What explicit provisions have you made for
work that isn’t on your WBS?

• Does the activity network clearly organize,
define, and graphically display the work to
be accomplished?

• Does the top-level activity network
graphically define the program from start to
finish, including dependencies?

• Does the lowest-level WBS show work
packages with measurable tasks of short
duration?

• Are project objectives fully supported by
lower-level objectives?

• Does each task on the network have a well-
defined deliverable?

• Is each work package under budget control
(expressed in labor hours, dollars, or other
numerical units)?

A well-constructed activity network is
essential for accurate estimates of project time,
cost, and personnel needs, because estimates
should begin with specific work packages.

19

FI G U R E 3.1 AC T I V I T Y NE T W O R K EX A M P L E

Analysis and
Specification

Requirements
Review

Architectural
and Data
Design

Preliminary
Design
Review

Procedural
Design

Design
Walkthrough

Coding Unit
Test

Integration
Test

Validation
Test

Test
Planning

= Milestone Test
Procedure

Testing
Review

Code
Walkthrough

2. Do you have a current, cre d i b l e
schedule and budget?

• Is the schedule based on a project/
activity network supported by the
WBS?

• Is the schedule based on realistic
historical and quantitative
performance estimates?

• Does the schedule provide time for
education, holidays, vacations, sick
leave, etc.?

• Does the schedule provide time for
quality assurance activities?

• Does the schedule allow for all
interdependencies?

• Does the schedule account for
resource overlap?

• Is the schedule for the next 3-6
months as detailed as possible?

• Is the schedule consistently
updated at all levels on Gantt,
PERT, and Critical Path charts
every two weeks?

• Is the budget clearly based on the
schedule and required resources
over time?

• Can you perform to the schedule
and budget?

3. Do you know what software
you are responsible for
delivering?

• Are system operational
requirements clearly specified?

• Are definitions of what the
software must do to support
system operational requirements
clearly specified?

• Are system interfaces clearly
specified and, if appropriate,
prototyped?

• Is the selection of software
architecture and design method
traceable to system operational
characteristics?

• Are descriptions of the system
environment and relationships of
the software application to the
system architecture specified
clearly?

• Are specific development
requirements expertly defined?

• A re specific acceptance and delivery
re q u i rements expertly defined?

• A re user re q u i rements agreed to by
joint teams of developers and users?

• Are system requirements traceable
through the software design?

4. Can you list the current top
ten project risks?

• Has a full-time Risk Management
O fficer been assigned to the pro j e c t ?

P R O J E C T A N A LY Z E R

• Are risks determined through established
processes for risk identification, assessment,
and mitigation?

• Is there a database that includes all non-
negligible risks in terms of probability, earliest
expected visible symptom, and estimated and
actual schedule and cost effects?

• Are all project personnel encouraged to
become risk identifiers? Is there an
anonymous communications channel for
transmitting and receiving bad news?

• Are correction plans written, followed up, and
reported?

• Is the database of top ten risks updated
regularly?

• Are transfers of all deliverables/products
controlled?

• Are user requirements reasonably stable?

• How are risks changing over time?

5. Do you know your schedule
compression percentage?

• Has the schedule been constructed bottom up
from quantitative estimates, not by
predetermined end dates?

• Has the schedule been modified when major
software modifications have taken place?

• Have programmers and test personnel
received training in the principal domain area,
the hardware, support software, and tools?

• Have very detailed unit-level and interface
design specifications been created for
maximum parallel programmer effort?

• Does the project avoid extreme dependence
on specific individuals?

• Are people working abnormal hours?

• Do you know the historical schedule
compression percentage on similar projects,
and the results of those projects?

• Is any part of the schedule compression based
on the use of new technologies?

• Has the percent of software functionality
been decreased in proportion to the percent
of schedule compression?

Nominal Expected Time is a function of total
effort expressed in person months.

For example, Boehm1 found that:

For a class of DoD project of 500 person
months or more:

Nominal Expected Time was measured
from System Requirements Review to
System Acceptance Test.

Calendar
Time Scheduled

Nominal
Expected Time

21

Schedule
Compression
Percentage

= 1.00 -

Nominal Expected
Expected = 2.15 x Person
Time Months

0.33

1 Software Engineering Economics, Prentice Hall, 1981.

x 100{ }

P R O J E C T A N A LY Z E R

Attempts to compress a schedule to
less than 80 percent of its nominal
schedule aren’t usually successful.

New technologies are an additional
risk in time and cost.

6. What is the estimated size of
your software deliverable?
How was it derived?

• Has the project scope been clearly
established?

• Were measurements from
previous projects used as a basis
for size estimates?

• Were Source Lines of Code
(SLOC) used as a basis for
estimates?

• Were Function Points (FPs) used
as a basis for estimates?

• What estimating tools were used?

• Are the developers who do the
estimating experienced in the
domain area?

• Were estimates of project size
corroborated by estimate
verification?

• Are estimates regularly updated to
reflect software development
realities?

Software size estimation is a process
that should continue as the project
proceeds.

7. Do you know the percentage
of external interfaces that
are not under your control?

• Has each external interface been
identified?

• Have critical dependencies of
each external interface been
documented?

• Has each external interface been
ranked based on potential project
impact?

• Have procedures been established
to monitor external interfaces
until the risk is eliminated or
substantially reduced?

• Have agreements with the
external interface controlling
organizations been reached and
documented?

8. Does your staff have
sufficient expertise in the key
project domains?

• Do you know what the user needs,
wants, and expects?

• Does the staffing plan include a
list of the key expertise areas and
estimated number of personnel
needed?

• Does most of the project staff have experience
with the specific type of system (business,
personnel, weapon, etc.) being developed?

• Does most of the project staff have extensive
experience in the software language to be used?

• Are the developers able to proceed without
undue requests for additional time and cost to
help resolve technical problems?

• Do the developers understand their project
role, and are they committed to its success?

• Are the developers knowledgeable in domain
engineering—the process of choosing the best
model for the project and using it throughout
design, code, and test?

• Is there a domain area expert assigned to each
domain?

9. Have you identified adequate staff to
allocate to the scheduled tasks at the
scheduled time?

• Do you have sufficient staff to support the
tasks identified in the activity network?

• Is the staffing plan based on historical data of
level of effort or staff months on similar
projects?

• Do you have adequate staffing for the current
tasks and all the tasks scheduled to occur in
the next two months?

• Have alternative staff buildup approaches
been planned?

• Does the staff buildup rate match the rate at
which the project leaders identify unsolved
problems?

• Is there sufficient range and coverage of skills
on the project?

• Is there adequate time allocated for staff
vacations, sick leave, training, and education?

• Are staffing plans regularly updated to reflect
reality?

23

25

C H A P T E R 4

Q U A N T I TAT IVE TA R G E T S

Q U A N T I TATIVE TA R G E T S

Quantitative targets apply to key project areas being measured, providing best-in-class
objectives for DoD-contracted software projects. The targets and their associated
warning levels of possible malpractice are:

SIZE METRIC ALTERNATIVES

Both Source Lines of Code (SLOC) and
Function Points (FPs) can be used as

basic measurements of software size and
complexity. The following enables
SLOC to be converted to FPs, and
vice versa:

LOW MEAN HIGH

Assembly language 200 320 450
C 60 128 170
C+ + 20 29 65
Jovial 75 106 160
CMS-2Y 75 106 160
ALGOL, CHILL, COBOL, FORTRAN 75 106 160
Pascal 50 91 125
RPG, PL/I 50 80 115
Modula 2 Ada 70 80 90
Prolog, LISP, Forth, BASIC 35 64 90
Logo ---- 53 ----
Fourth generation database ---- 40 ----
Stratagem ---- 35 ----
APL ---- 32 ----
Objective-C 17 26 38
SmallTalk 12 21 30
Query languages ---- 16 ----
Spreadsheet languages 3 6 9

SLOC PER FUNCTION POINTPROGRAMMING

LANGUAGE

FIGURE 4.1 SLOC-TO-FUNCTION-POINT CONVERSION TABLE
Reprinted from Applied Software Measurement, Capers Jones, McGraw-Hill, 1991.

- Original Defect Density and Defect
Removal Efficiency

- Slip or Cost Overrun in Excess
of Risk Reserve

- Total Requirements Growth
- Total Software Program

Documentation
- Voluntary Staff Turnover Per Year

27

Metrics can provide valuable insight into a software
development process and are also valuable for
process improvement.

A DEFECT is a “bug” or problem which, if not
removed, could cause a computer program to either
fail or produce incorrect results.

DEFECT REMOVAL EFFICIENCY is the aggregate
of all defects removed by all means, to include:

• Desk checking
• Reviews

• Walkthroughs
• Inspections
• Editing

In order to calculate defect removal efficiency,
defect totals are tracked from requirements
specification through system delivery and into the
first year of being fielded.

Defect Removal Efficiency >95% <85%

Original Defect Density <4 Per >7 Per
Function Point Function Point

MEASUREMENT TARGET
WARNING

LEVEL

PRERELEASE DEFECTS

PRERELEASE DEFECTS + ONE

YEAR OF REPORTED DEFECTS

REMOVAL

EFFICIENCY
=

Requirements 1.00 77% 0.23
Design 1.25 85% 0.19
Coding 1.75 95% 0.09
Document 0.60 80% 0.12
Bad Fixes 0.40 70% 0.12

TOTAL 5.00 85% 0.75

REMOVAL
EFFICIENCY

DEFECT
POTENTIAL DELIVERED

DEFECT
ORIGINS

FIGURE 4.2 DEFECT REMOVAL EFFICIENCY FOR SELECTED DEFECT REMOVAL ACTIVITIES
Reprinted from Applied Software Measurement, Capers Jones, McGraw-Hill, 1991.

Techniques and technologies used to minimize or
prevent the risk of human error by software
engineering staff include:

• Formal quality plans

• Use of Joint Application Design (JAD)
techniques, including intensive team-based
analysis, design, and development sessions

• Prototyping

0% ≥ 10%
Schedule Slip or Cost in
Excess of Risk Reserve

MEASUREMENT TARGET
WARNING

LEVEL

• Reusable designs and code from
certified sources

• Software quality assurance teams

• Total quality management methods

• Reviews, walkthroughs, and
inspections

• Use of appropriate automated defect
estimation and measurement tools

• Clean Room development methods
—a model using statistical quality
control to engineer software (See
Best Practice “Encourage Clean
Room Techniques,” Chapter 6, for
applicability.)

A dollar spent on defect prevention
has been shown to reduce the costs
associated with fixing defects from
$70.00 to $3.00 per Function Point.

SLIP is the amount of time that a
deliverable or product is late from its
originally scheduled date.

COST OVERRUN refers to projects or
deliverables in which the actual cost
exceeds the estimated or budgeted
amounts.

The SCHEDULE outlines the time and
lists the milestones from requirements
specification to product acceptance.

RISK RESERVE is money and time held
in reserve to be used in the event that
risks occur.

Preventive techniques include using:

• Functional metrics to quantify

estimates and progress toward plans

• Commercial-grade software project
estimating tools

• Commercial-grade project planning
tools

• A measurement process that includes
lowest-level activity, or inch-pebble,
measurement

Software development schedule slips
and cost overruns tend to increase in
exponential proportion to project size.

Cost overruns occur on more than 50
percent of all software projects that
have more than 25,000 Function
Points.

Q U A N T I TATIVE TA R G E T S

29

REQUIREMENTS GROWTH is defined as the
increase between baselined and current documented
requirements.

At 1 percent growth per month, system
requirements on a 3-year project will increase
baseline requirements by 33 percent.

Techniques for establishing a more effective
requirements process include:

• Joint Application Design (JAD) which includes
intensive team-based analysis, design, and
development sessions

• Integrated Product Teams (IPTs) composed of
clients, technical staff, key support groups, and
contractor staff

• Prototyping

• Formal change control processes

Unacceptable requirements growth occurs on
more than 70 percent of projects over 1,000
Function Points.

≤ 1%
Per Month

≥ 50%
Per Year

PROGRAM DOCUMENTATION includes all
online and hardcopy information supporting the
system’s contractual agreement, design, build,
operation, and maintenance.

Paperwork can be reduced by:

• Decreasing documentation required by
standards

• Decreasing delivery of documentation that
already exists in development files

• Using outlines and guidelines for specification
and design documentation

• Observing standards for brevity and clarity in
paperwork requirements

• Building and using a database specifically for
documentation and publication

Fifty-two percent of the total costs of defense
systems is attributable to paperwork.

Total Requirements Growth
(In FP or Equivalent)

MEASUREMENT TARGET
WARNING

LEVEL

<1000 Words
Per FP

>2000 Words
Per FP

Total Software Program
Documentation

MEASUREMENT TARGET
WARNING

LEVEL

REPLACEMENT
DELAY
(WEEKS)

ASSIMILATION
EFFECT
(WEEKS)

TERMINATION
EFFECT
(WEEKS)

LOSS %
(WEEKS X 2)

TOTAL
(WEEKS)

PLANNED
STAFF

DURATION
(WEEKS)

Human continuity is important to
project success.

VOLUNTARY STAFF TURNOVER is
a measurement of employees the project
wants to keep, but who choose to leave.
A small amount of staff turnover is
expected on projects that last longer than
six months.

Common reasons why software
engineering employees choose to leave
are:

• Tough economic conditions
resulting from smaller defense
budgets

• Having undervalued skills and a
market for their skill

• Poor project management

• Inadequate tools

• Unsatisfactory work conditions,
location, environment, unreasonable
hours, etc.

20 2 4 4 10 50
40 2 4 4 10 25
80 4 4 6 14 17

120 4 4 6 14 11

FIGURE 4.3 IMPACT OF STAFF TURNOVER ON PLANNED PROJECT PRODUCTIVITY
Reprinted from Software Costing, Frank Wellman, Prentice Hall, 1992.

Q U A N T I TATIVE TA R G E T S

1-3% ≥ 10%
Voluntary Staff

Turnover Per Year

MEASUREMENT TARGET
WARNING

LEVEL

31

33

C H A P T E R 5

P R I N C I PAL BEST PRACTICES

Under the aegis of the Software Program
Managers Network, the Airlie Software
Council of software experts and industry
leaders has identified nine Principal Best
Practices that, if implemented, will
improve software development and
maintenance productivity and quality,
reduce cost, and improve user
satisfaction. These practices, which have
proven successful in industry, are
applicable to nearly all large-scale DoD
software development projects:

1. Formal Risk Management

2. Agreement on Interfaces

3. Formal Inspections

4. Metrics-based Scheduling and
Management

5. Binary Quality Gates at the
Inch-Pebble Level

6. Program-wide Visibility of
Progress vs. Plan

7. Defect Tracking Against Quality
Gates

8. Configuration Management

9. People-Aware Management
Accountability

P R I N C I PAL BEST PRACTICES

35

1. FORMAL RISK MANAGEMENT

A formal risk management process requires
corporate acceptance of risk as a major
consideration for software program
management, commitment of program
resources, and formal methods for identifying,
monitoring, and managing risk.

PROBLEM ADDRESSED:

All software has risk. The cost of resolving a
risk is usually relatively low early on, but
increases dramatically as the project progresses.

PRACTICE ESSENTIALS:

• Identify risk

• “Decriminalize” risk

• Plan for risk

• Formally designate a Risk Officer (a senior
member of the management team responsible
for risk management)

• Include in the budget and schedule a
calculated risk reserve buffer of time, money,
and other key resources to deal with risks that
materialize

• Compile a database for all nonnegligible
risks

• Include technical, supportability,
programmatic, cost, and schedule risks

• Prepare a profile for each risk (consisting of
probability and consequence of risk
actualization)

• Include risks over full life cycle (not just
during your watch)

• Do not expect to avoid risk actualization

• Keep risk resolution and workarounds off the
critical path by identifying and resolving risk
items as early as possible

• Provide frequent Risk Status Reports to
program manager that include:

- Top ten risk items

- Number of risk items resolved to date

- Number of new risk items since last
report

- Number of risk items unresolved

- Unresolved risk items on the critical path

- Probable cost for unresolved risk vs. risk
reserve

STATUS CHECKS:

• Has a Risk Officer been appointed?

• Has a risk database been set up?

• Do risk assessments have a clear impact on
program plans and decisions?

• Is the frequency and timeliness of risk
assessment updates consistent with decision
updates during the project?

• Are objective criteria used to identify,
evaluate, and manage risks?

• Do information flow patterns and reward

P R I N C I PAL BEST PRACTICES

criteria within the organization
support the identification of risk by
all project personnel?

• Are risks identified throughout the
entire life cycle, not just during the
current program manager’s
assignment?

• Is there a management reserve for
risk resolution? (See Best Practice
“Establish Management Reserves
for Risk Resolution,” Chapter 6.)

• Is there a risk profile drawn up for
each risk, and is the risk’s
probability of occurrence,
consequences, severity, and delay
regularly updated?

• Does the risk management plan
have explicit provisions to alert
decision makers upon a risk
becoming imminent?

2. AGREEMENT ON INTERFACES

A baseline interface must be agreed
upon before the beginning of
implementation activities, and the
user interface must be made and
maintained as an integral part of the
system specification. For those
projects developing both hardware
and software, a separate software
specification must be written with an
explicit and complete interface
description.

PROBLEM ADDRESSED:

System interfaces generally constitute
essential elements of a system’s
requirements and architecture, but
are not completely controlled by the
developer. Not ensuring that
external interfaces are properly
identified, integrated, and stabilized
early will create the need for
expensive and time-consuming
“fixes” later.

PRACTICE ESSENTIALS:

• Recognize that both user interfaces
and external system interfaces are
critical

• Fully identify and baseline the user
interface before beginning
development

• Define each input/output data item

• Display navigation between
screens as well as screen fields

• Include the user interface as part
of system specification

• Use rapid prototyping of a
Graphical User Interface (GUI)
as a tool for the user to define
requirements

• For embedded systems, prepare a
separate system specification for
the software

37

STATUS CHECKS:

• Is there a complete census of input/outputs?
A re such inputs/outputs defined down to the
data element level?

• A re the interfaces stable?

• Have you considered hard w a re / s o f t w a re, users,
major software component interfaces, etc.?

• Have existing and future interfaces been
defined, including consideration of those that
may be required over time?

• Does the system specification include a
separate software specification to show the
hardware interfaces?

• Are opportunities made available for users to
provide input and review the user interface
descriptions as they develop?

Only the prospective operational user can
define/verify user interface correctness with a high
probability of success (the developer cannot).

For most software, the user interface defines user
requirements from both the user and development
perspectives.

3. STRUCTURED PEER REVIEWS

Peer reviews should be conducted on
requirements, architecture, designs at all levels,
code prior to unit test, and test plans.

PROBLEM ADDRESSED:

Rework to fix defects accounts for between
40 percent and 50 percent of total development
costs. Stru c t u red peer reviews typically find 80
p e rcent of defects as they happen (walkthro u g h s
typically find 60 percent). When eff e c t i v e l y
used, stru c t u red peer reviews can make an
e n o rmous diff e rence to program cost, schedule,
and quality.

PRACTICE ESSENTIALS:

• Use structured peer reviews starting early in
development to effectively identify
requirements defects

• Have the customer participate in peer reviews

• Use small teams of prepared reviewers with
assigned roles

• Ensure that entry and exit criteria exist for
each review

STATUS CHECKS:

• Are peer reviews identified and implemented
to assess the quality of all baselined artifacts
and placed under control before they are
released for project use?

• Is the conduct of peer reviews structured, and
are they integrated into the project schedule?

• Are procedures, standards, and rules for the
conduct of peer reviews established?

P R I N C I PAL BEST PRACTICES

• Are metrics used to gauge the
effectiveness of peer reviews?

• Is there a documented process for
conducting peer reviews?

• Are entrance and exit criteria
established for each peer review?

• Are a significant number of defects
caught as early as possible (prior to
testing at least)?

• Are peer reviews specifically
focused on a narrow set of
objectives, and do they evaluate a
fixed set of data?

• Is there a clear rationale for the
scheduling of peer reviews?

• Are defects from peer reviews
tracked and catalogued?

• Are peer reviews conducted to
assess the quality of all engineering
data products before they are
released for project use?

• Is the detailed design reviewable?

4. METRICS-BASED SCHEDULING
AND MANAGEMENT

Cost and schedule estimates should be
based on empirical data. Metrics-
based planning re q u i res early
calculation of size, projection of costs
and schedules from empirical pattern s ,
and tracking of project status thro u g h
the use of capture d - result metrics.

PROBLEM ADDRESSED:

The important issue here is to
identify problems early. This is the
primary reason to make sure metrics
are being done right. Your metrics
are the yardstick for measuring
progress against your baseline plan,
and become your warning indicator
for further inquiry and action. Of
course, the earlier the visibility of a
problem, the better the chance of
avoiding the problem or controlling
its negative effect.

PRACTICE ESSENTIALS:

• Estimate cost and schedule using
data from completed projects of
similar size and objective

• Compare with cost model estimate

• Plan short-duration tasks with
measurable products (see Best
Practice “Activity Planning,”
Chapter 6, and Principal Best
Practice “Binary Quality Gates at
the Inch-Pebble Level,” Chapter 5.)

• Review the following at frequent
intervals throughout the project:

- Earned Value (BCWP) vs.
Actual Expended

- Cost to Complete (including
estimate for unresolved risk) vs.
Planned at Completion

- Schedule to Complete vs.
Planned Schedule

- Cost Performance Index

- To-Complete Performance Index

• Manage defect closure time (see Principal Best
Practice “Defect Tracking Against Quality
Targets,” Chapter 5.)

• Don’t hide problems with rebaselining

• Report Earned Value and other progress
measures against original baseline

• Track other Control Panel metrics (see
Chapter 2.)

STATUS CHECKS:

• A re cost and schedule perf o rmance tracked
against the initial baseline and the latest baseline?

• Are the number of changes to the initial
cost/schedule baseline tracked?

• Does the plan identify progress measures to
permit rate charting and tracking?

• Are inspection coverage and error removal
rates tracked for the entire product and for
each component?

• Are project estimates continuously refined as
the project proceeds?

• Is a project feedback loop established between
project measures and updated schedules?

• Is there a process for capturing the primitive
data necessary to calculate Earned Value?

• Are productivity levels and schedule deadlines
evaluated against past performance and
reflected in the risk assessment?

• Are the planned vs. actual cost and planned vs.
actual schedule monitored?

• Is there automated support for metrics-based
scheduling and tracking procedures?

It’s important to determine whether an
indicated schedule delay is a problem with the
people carrying out the efforts or with a plan
that was too aggressive to begin with. That is,
don’t punish competent, highly productive
development staff if they don’t meet
unreasonable cost and schedule estimates.

5. BINARY QUALITY GATES AT THE INCH-
PEBBLE LEVEL1

Completion of each task in the lowest-level
activity network needs to be defined by an
objective binary indication. These completion
events should be in the form of gates that assess
either the quality of the products produced or
the adequacy and completeness of the finished
p ro c e s s .

PROBLEM ADDRESSED:

When planning and project monitoring are not
based on sufficient detail, any picture of where
the program is and how it is progressing is
simply an illusion.

By focusing on detail, specific development or
maintenance efforts can be more effectively
identified, planned, and tracked. By utilizing
quality gates that prevent effort outputs from
moving on until they pass all their predefined
acceptance criteria, and binary determination of
the effort’s completeness (it’s either done or it’s
not), evaluation of how actual progress is being

39

1 The Aerospace Industries Association (AIA) has commented that the use of technical reviews, tests,
demonstrations, or audits as “completion criteria for ‘inch-pebbles’ is excessive in terms of value added to the
customer or the contractor.” AIA recommended the “retention of the ‘Binary Quality Gates’ concept and
deletion of references to the granularity of the tasks and to the term ‘inch-pebbles.’”

made against the plan becomes
meaningful.

PRACTICE ESSENTIALS:

• Ensure visibility of where the
development really is, based upon
products produced

• Ensure that every lowest-level (i.e.,
inch-pebble) task:

- Is of short duration

- Expends a small percent of the
total budget

- Is dedicated to producing a
tangible product necessary for a
required deliverable

• Define a binary gate for every
inch-pebble task (objective
acceptance criteria/tests for
determining whether the output
product is acceptable)

• Give no Earned Value credit for an
inch-pebble task until the binary
gate is passed

STATUS CHECKS:

• Have credible project status and
planning estimates been pro d u c e d
based on inch-pebble quality gates
that can be aggregated at any
desirable level?

• Have all activities been decomposed
into inch-pebbles?

• Has all near-term work been
decomposed into tasks no longer
than two weeks in duration?

• Have achievable accomplishment
criteria been identified for each
task? Are tasks based on overall
quality goals and criteria for the
project?

• A re quality gates rigorously
applied for determining task
accomplishment, without exception?

• Is there clear evidence that
planned tasks are 100 percent
complete before acceptance?

• Is there clear evidence of successful
completion of inspections?

• A re inch-pebble tasks on the critical
path defined, enabling more
accurate assessment of schedule risks
and contingency plans?

• Is the set of binary quality gates
compatible with the WBS?

6. PROGRAM-WIDE VISIBILITY OF
PROGRESS VS. PLAN

The core indicators of project health
or dysfunction––the Control Panel
indicators––should be made re a d i l y
available to all project part i c i p a n t s .
Anonymous channel feedback should

P R I N C I PAL BEST PRACTICES

be encouraged to enable bad news to move up and
down the project hierarc h y.

PROBLEM ADDRESSED:

When everyone is involved in identifying
problems early, the likelihood of missing
problems is greatly reduced, improving risk
management and increasing the probability of
program success.

PRACTICE ESSENTIALS:

• Make Control Panel metrics continuously
available to all members of the team and the
customer

• Establish an anonymous communications
channel for anyone to report problems (This
channel will also be used by malcontents, but
it’s much better to get false alarms than miss a
major problem until it is too late to recover.)

• Maintain top-down, program-wide visibility
to reduce the number of reports of non-
problems

STATUS CHECKS:

• Are status indicators on the Control Panel
updated at least monthly?

• Are the status indicators integrated into the
management decision process?

• Is project status known by all project personnel?

• Can staff report problems as well as successes?

• Are project goals, plans, schedules, and risks
available to the project team and interested
parties?

• Is anonymous channel feedback visible to all
project members?

7. DEFECT TRACKING AGAINST QUALITY
TARGETS

Defects should be tracked formally at each
project phase or activity. Configuration
Management (CM) enables each defect to be
recorded and traced through to removal. In this
approach there is no such thing as a private
defect, that is, one detected and removed
without being recorded.

PROBLEM ADDRESSED:

The only way to keep program costs from
exploding is by finding and fixing defects as they
occur. The cost of fixing defects typically
increases by a factor of ten as they pass into each
subsequent development phase.

PRACTICE ESSENTIALS:

• Establish a goal for delivered defects per unit
of size (defects include requirements
problems)

• Implement practices to find defects when they
occur

• Track average and maximum time to close a
defect after it’s reported

• Track defect removal efficiency of:

- All defects found through all techniques
reported to and tracked by CM

- All defects reported from field for first year
after deployment

41

• Grade developers on defect
removal efficiency:

Number of Defects Found
& Fixed During Development

Number of Defects Found
& Fixed During Development

& First Year in Field

STATUS CHECKS:

• Are defect targets established for
the project? Are the targets firm?

• Are consequences defined if a
product fails to meet the target?

• Do project quality targets apply to
all products?

• Are there circumstances defined
under which quality targets ar e
subject to revision?

• What techniques are used to
project latent defect counts?

• How are current projected levels
of defect removal empirically
confirmed as adequate to achieve
planned quality targets?

• Is test coverage sufficient to
indicate that the latent-defect level
achieved by the end of testing will
be lower than the established
quality targets?

• Are the inspection and test
techniques employed during the
program effective in meeting
quality targets?

• Do all discovered defects undergo
CM, and are accurate counts
achieved for defects discovered and
defects removed?

• Is there a closed-loop system
linking defect actions from when
defects are first detected to when
they’re resolved?

• Is defect information defined at a
level of granularity that supports
an objective assessment of
resolution on a periodic basis?

The cost of removing defects
typically accounts for between 40
percent to 50 percent of all
development costs. The bigger
software becomes, the greater the
rate at which defects occur—the
“software defect snowball effect.”

Typically 20 percent of all software
modules contain approximately 80
percent of the defects.

8. CONFIGURATION
MANAGEMENT

Configuration Management is an
integrated process for identifying,
documenting, monitoring, evaluating,

P R I N C I PAL BEST PRACTICES

controlling, and approving all changes made
during the life cycle of the program for
information that is shared by more than one
individual. The discipline of CM is vital to the
success of any software effort.

PROBLEM ADDRESSED:

Complexity is the cause of most of the problems
attacked by the Best Practices. There is an
inherent complexity in large-scale software
projects that cannot be reduced. However, it is
very easy to increase software development and
maintenance complexity to a level that greatly
exceeds this inherent complexity. Failure at
Configuration Management is a sure way to
dramatically increase complexity to the level of
chaos.

PRACTICE ESSENTIALS:

• Formally track the status of problem reports,
Engineering Change Proposals, etc.

• Control change to:
- Deliverables
- Cost/schedule baselines
- External interfaces

• Have a formal process for making change to a
baseline

• Automate the CM process when possible

STATUS CHECKS:

• Is the CM process integrated with the project
plan, and is it an integral part of the culture?

• Are configuration control tools used for status
accounting and configuration identification
tracking?

• Are periodical reviews and audits in place to
assess the effectiveness of the CM process?

• Are all pieces of information shared by two or
more organizations placed under CM?

• Do you have a process to measure the cycle
time?

MIL-STD-973 provides a good definition of
Configuration Management.

9. PEOPLE-AWARE MANAGEMENT
ACCOUNTABILITY

Management must be accountable for staffing
qualified people (those with domain knowledge
and similar experience in previous successful
projects) as well as for fostering an environment
conducive to high morale and low voluntary
staff turnover.

PROBLEM ADDRESSED:

Perhaps the single most important determinant
of project success is the quality, experience, and
motivation of the people working on it.

No matter how well versed a software person is
in the technology relative to the job, a
substantial investment is required to bring that
person to a level of detailed understanding
about the application being developed or
maintained. In spite of efforts to document the

43

software, vital information about
your project exists only in the minds
of select individuals. And with the
rapid advances in software
technology that have occurred and
will continue to occur, a high
percentage of software professionals
are not proficient in the best
technology related to their job. A
significant part of software
development and maintenance
requires human intellect and
creativity at a level exceeding that
required for most jobs. Demands
upon intellect and creativity are even
greater with a number of the new
technologies such as client/server
networks and the abstractions
required for object- oriented analysis
and design.

PRACTICE ESSENTIALS:

• Ensure that one of the project
manager’s incentives is to maintain
staff quality and a low
voluntary turnover rate

• Keep records of actual hours
worked as well as hours charged to
the customer (Extended
periods of actual work greatly in
excess of 40 hours per week are an
indicator of excessive future
voluntary staff turnover.)

• Treat your stars well (There’s a

very high near-term and projected
long-term demand far in excess of
supply for computer engineers and
computer systems analysts.)

STATUS CHECKS:

• Will the procuring/developing
program manager be on board for
the entire project?

• Are domain experts available?

• Does the project manager have
software experience in a project of
similar size and objective?

• Are all personnel fully aware of
their role in the project?

• Is quality of performance
acknowledged?

• Is personnel continuity ensured in
light of changing company or
program needs?

• Are opportunities for professional
growth available to all members of
the project?

• Do the developers believe in the
goals of the project and that the
schedule is feasible?

• Is the motivation and retention of
personnel a key part of
management assessment?

P R I N C I PAL BEST PRACTICES

45

The preceding eight Principal Best Practices will
be of little help if the technical staff is not
qualified or quits.

Studies of large projects have shown that 90th
percentile teams of software people typically
outperform 15th percentile teams by factors of
four to five, with individual productivity ranges
of 26:1.

Studies have also shown a high correlation
between organizations that invest in timely
training and their development success, and that
a high percentage of software professionals do
not keep up with the technology.

In the event that a program manager desires additional information, the Network will provide source
materials and access to experts. We would greatly appreciate receiving your comments and suggestions
(preferably by e-mail).

E-MAIL: BEST@SPMN.COM PHONE: (703) 521-5231 FAX: (703) 521-2603

FIGURE 5.1 RELATIONSHIP BETWEEN GAUGES AND PRINCIPAL BEST PRACTICES

P R I N C I PAL BEST PRACTICES

47

49

C H A P T E R 6

B E S T P R A C T I C E S

BEST PRACTICES

These practices are derived from
practices used by successful commercial
and defense software projects.

Because the practices are not tied to a
specific metric or method, program
managers can apply a practice in response
to particular corporate and program
needs.

The practices are grouped into seven
proven management areas (see Figure
6.1):

• Risk Management

• Planning

• Program Visibility

• Program Control

• Engineering Practices and Culture

• Process Improvement

• Solicitation and Contracting

Of course, many of these practices apply
to more than one management area,
though for the sake of simplicity they’ve
only been listed once.

1. RISK MANAGEMENT

Risk management is vital to effectively managing
any large-scale software effort because each
software system being developed or maintained is
dependent on a unique set of changing factors.

Risk management includes:

• Estimating the likelihood of identified risks
occurring

• Establishing potential short-term and long-
term consequences of risks

• Establishing a strategy and methods for
comprehensive risk management

• Monitoring

Risks often encountered on software projects
include, but are not limited to:

• Large system size

• Unclear and changing requirements

• New technologies

• System complexity

• Scope not adjusted to budget

• High dependency on specific people

Risks are incurred for reasons including:

• An inability to gauge the true extent and
complexity of efforts to be accomplished

• An inability to accurately predict the extent of
resources (material and time) necessary to
complete efforts

• An organization tries to exceed its
competencies

• User requirements are unstable

• The software environment and tools remain
immature

• The technical difficulties are more difficult
than anticipated

• Schedules are based on predetermined dates
rather than quantitative estimates

• Attempting efforts in a manner inconsistent
with the organization’s culture

• Relying on silver bullets to induce large
productivity improvement

Risk Management Best Practices include:

• Establish Management Reserves for Risk
Resolution

• Implement Metrics-based Risk Decisions

• Perform Continuous Risk Management

• Formalize Risk Tracking and Review

• Manage Impact of External Dependencies

51

PRACTICE: ESTABLISH
MANAGEMENT RESERVES
FOR RISK RESOLUTION

Every project should have a reserve of
money and potential staff marked for
addressing risk and its potential
effects.

PRACTICE ESSENTIALS:

Management reserves include:

• Time––Some experts recommend
adding 10 percent above the
estimated time-to-delivery to the
schedule.

• Money––Potential additional staff,
tools, and time add potential project
costs.

• Staff and potential staff––The
personnel organization should
continue to interview for good
people.

PROBLEM ADDRESSED:

Lack of an adequate risk reserve can
stop fixed-rate contract completion
and preclude adequate resources on a
cost-plus contract.

REQUIREMENTS:

• Project risk analysis, with prioritized
risks assigned an estimated value

• Government program office support
for risk reserve in contractor bids

STATUS CHECKS:

• Is a risk reserve buffer established at
the beginning of the project? Do
fluctuations in the buffer occur only
as a result of revised risk
assessments?

• Are adequate risk alternatives
documented to permit resource
redistribution in the event of
unexpected or expected risks being
realized?

• Can expected risks be realized and
shortfalls in project resources be
recognized early enough to allow for
correction?

• Are checks and balances built into
the development process to
continually evaluate resources and
suggest alternative allocations to
maintain project integrity?

Risk reserve reevaluations and
updates should be performed along
with risk projections and
assessments.

Contractors (or developing agencies)
should not be held responsible for the
costs of creeping user requirements.

Throwing more programmers at an
overlong project can make it even
longer, but the right person in the
right job can make a big difference
in product results.

BEST PRACTICES

53

Cost-plus contracts without appropriate
incentives tend to decrease motivation for
contractors to establish risk reserves.

PRACTICE: IMPLEMENT METRICS-
BASED RISK DECISIONS

Metrics selection should be identified up front
and used to automatically trigger management
reviews.

PRACTICE ESSENTIALS:

• Predefined limits (such as a module of code
exceeding its estimated size by 10 percent) and
specific conditions (such as not finding expert
staff when needed) that automatically trigger
management reviews

• Time series analysis to project and analyze
long-term risks

• Metrics to measure risks concerning:

- Cost

- Effort or staffing

- Schedule

- System size

- Successful activity completion

• Product defects in terms of:

- Defect density

- Defect removal rates

- Incoming defects rate

- Defect closure rate

PROBLEM ADDRESSED:

Schedule slippage, cost overruns, low quality,
dissatisfied customers, and even program
cancellation are potential results when established
metrics are not used as risk indicators.

REQUIREMENTS:

• Metrics that accurately represent cost, product,
quality, or organizational processes

• M e a s u rements that trigger management re v i e w s

• Experience in actual risk management and
mitigation

• Management reviews ensure timely corrective
actions for cost overruns, schedule slip, or
performance deficiencies

• Documentation of decisions and actions taken

STATUS CHECKS:

• Does the risk management plan define reviews
and triggers that must be quantitatively
specified and monitored?

Guidelines to determine useful metrics for risk
identification, analysis, and management include:

• Characteristics of the software development
p ro c e s s

• Maturity of the software development pro c e s s

(A c c o rding to Grady1, projects should invest about
18 percent of their total project eff o rt during
re q u i rements specifications to double check.)

1 R. Grady, Practical Software Metrics for Project Management and
Process Improvement, Prentice Hall, 1993.

BEST PRACTICES

PRACTICE: PERFORM
CONTINUOUS RISK
MANAGEMENT

Enabling proactive risk management
iteration throughout the project life
cycle is the most efficient way to
identify and mitigate risks before they
become serious problems.

PRACTICE ESSENTIALS:

• Iterative assessments

• Identification of key program risks

• Prioritization

• Communication paths for user
involvement

PROBLEM ADDRESSED:

Uncertainty is inherent in software
projects because of lack of
information, advances in technology,
and system complexity.

REQUIREMENTS:

• A proactive approach to risks

• Plans for risk mitigation steps

• An organizational structure and
activities for managing risk
throughout the product life cycle

• Analysis

• Action planning

• Tracking and control

• Automated risk management tools

STATUS CHECKS:

• Is the risk database formally and
routinely updated to reflect changes
to risk status?

• Is a list of the top ten risks produced
at the beginning of the project and
updated at least monthly?

• Does evidence exist that identified
risks have been mitigated or
accepted?

• Does data for each risk include risk
type, description, consequences, and
potential mitigation approaches?

Use a risk identification checklist as
a guide to prepare a list of potential
risk items against the Work
Breakdown Structure.

Risks that are “showstoppers”—
with the potential for significantly
impacting the project—should be
reported on regularly.

PRACTICE: FORMALIZE RISK
TRACKING AND REVIEW

All projects should establish and
maintain a formal risk tracking system
that incorporates risk traceability.

PRACTICE ESSENTIALS:

• A documented risk management plan

• A documented risk management process

• A prioritized list of risks

• Meetings with customers about major risks

PROBLEM ADDRESSED:

Risks that are not traced or tracked are not
managed, may be forgotten, or dismissed as
minor, and yet they may have serious
repercussions later in the program. Formal risk
tracking and review increases the recorded
knowledge concerning program risks, facilitates
communication of risk status, provides
traceability to the risk source, and ensures proper
management attention to risk.

REQUIREMENTS:

• Regularly scheduled reviews by senior
management

• Management attention to risk

• An automated tracking system that incorporates
risk traceability

• A risk database that saves all entries in case of
potentially related problems

• Formal presentations to management on risk
topics, including importance of risk, severity of
risk, how risk can be mitigated, and status of
current high-priority risks

STATUS CHECKS:

• Are risk procedures documented?

• Does the staff understand how the risk tracking
system works?

• Are risks assessed and prioritized both in terms
of likelihood and potential impact?

Be aware of cultural resistance to formalizing
risk management processes.

When risks are controlled, with a few
exceptions, plans are executed during normal
working hours.

The program manager has the ultimate
responsibility for validating and tracking all
risks during the definition of material outcome
and the contract placement phases of the
acquisition model.

PRACTICE: MANAGE IMPACT OF
EXTERNAL DEPENDENCIES

All products that come from an external project
or result from an external action should be
identified and monitored.

PRACTICE ESSENTIALS:

• Monitor dependencies that have potential
significant impact until the risk is eliminated,
substantially decreased, or until the end of the
program

55

PROBLEM ADDRESSED:

External dependencies, including
activities, resources, information,
conditions, and influences can
potentially cripple a project.

REQUIREMENTS:

• Memoranda of understanding with
organizations that control the
external dependencies

• Contract to limit liability of risks
resulting from external dependencies
(for example, failure of the
government to deliver the product
on time)

STATUS CHECKS:

• Are external dependencies clearly
identified?

• Are external dependencies
represented on the Work
Breakdown Structure?

• Are procedures in place for
monitoring and managing the status
of the external dependencies?

Because internal program problems
demand immediate attention, too
little attention is paid to external
dependencies, which increases risk.

Contingency scenarios for identified
external dependencies should be
developed.

BEST PRACTICES

57

2. PLANNING

Software management planning includes:

• Defining the product goals

• Structuring the project

• Reviewing the plan

• Scheduling the project

• Testing the plan

• Costing the plan

• Frequently revising the plan as project
circumstances change

Planning starts top down—a client needs
software to solve a specific problem—and it
should proceed mostly bottom up, as plans are
refined or changed.

Compare your plans to previous experience and
historical software project data.

At the beginning of the project, resolve standard
definitions for:

• Valid product and process measurements

• Mutually acceptable analysis techniques

• User product acceptance criteria

Resources can be estimated in several ways:

• By analogy to similar projects

• According to expert studies and opinions

• Build-to-cost

• Top down

• Bottom up

• Cost modeling

After initial brainstorming sessions, team
planning should continue as short, formal
meetings followed by short, clear, well-
distributed minutes.

Planning should be iterative and evolutionary,
with plans updated regularly to reflect project
realities.

The project plan should be clearly documented
and made available to everyone on the project.

High- and low-level tasks should be described in
terms of their:

• Purpose

• Performance approach

• Inputs

• Outputs

• Metrics

• Risks

• Resources

Plans should be tied to tasks and layered onto the
project master schedule to cross-check budget
and schedule adequacy.

Results of estimation tools should be corroborated
or corrected with estimation verification tools.

During initial planning, a quality plan
should be produced that identifies the
quantitative goals for software product
quality, metrics, and any process
changes that are needed from the
start.

Planning Best Practices include:

• Quantitative Software Estimation/
Verification

• Joint Team Involvement

• Activity Planning

• Data Requirements

BEST PRACTICES

59

PRACTICE: QUANTITATIVE
SOFTWARE ESTIMATION/
VERIFICATION

Quantitative cost estimation and verification are
essential to reducing estimation errors.
Commercial estimating tools tuned to an
organization’s database of past projects increase
the likelihood of accurate estimates.

PRACTICE ESSENTIALS:

• Software system size is the cornerstone
estimate. Size affects the schedule, effort, cost,
productivity, and quality of software systems.
Software bugs, or defects, grow at a rate linear
to system size.

• Large software systems consist of millions of
lines of code, too much for an individual or
small group to fully understand, much less
write. Current methodologies for sizing
systems are:

- Counting Source Lines of Code (SLOC)

- Estimating processing events that will take
place for a specified duration

- Assigning and adding up Function Points, a
mathematical model in which Points
correspond to features to be delivered to the
client

PROBLEM ADDRESSED:

Inaccurate estimates are caused by ineffective
estimating tools, lack of an accumulated historical
database, and/or growth in project scope.

REQUIREMENTS:

• Software cost estimates predicated on the
developer’s past performance in the domain and
on historical data

• Regularly scheduled estimate updates that
detail changes to baselines and their rationale,
including progress, quality, and cost

• Regular updates to correspond with reality
throughout the project, and reflected in the
contractor’s software development plan or
through other media established by the
contract

STATUS CHECKS:

• Is more than one type of estimation technique
used, and are the results compared and
analyzed?

• Is historical data used to support the estimates?

• Are the estimation process, assumptions, risks,
and results documented?

• Is the estimate reviewed with higher
management and the customer?

• Are estimation techniques reapplied regularly
to produce more accurate forecasts as new data
becomes available?

All estimates should evolve along with the
product under development.

Changes and updates to the contractor’s proposal
should be mutually agreed to by the acquirer
and the contractor.

Documenting the calculations of
individual estimates allows for easier
review and understanding.

PRACTICE: JOINT TEAM
INVOLVEMENT

Multidisciplined support teams should
translate initial and evolving user
needs into clear, concise, and
complete system requirements.

PRACTICE ESSENTIALS:

• Techniques that capitalize on
customer/contractor involvement
such as:

- Integrated Product Teams (IPTs)

- Joint Requirements Planning
(JRP)

- Joint Application Design (JAD)

- Internal and user prototype
demos, especially of the interface
as it evolves

- Structured acceptance test
sessions

PROBLEM ADDRESSED:

Failure to meet customer and user
expectations caused by missing or
ineffective communication among
stakeholders.

REQUIREMENTS:

• Active participation by team
representatives

• Prewritten agenda and constraints
for all team meetings

• Clearly stated goals and objectives

• Professional facilitation to assure
focus, participation, and mutually
understood communications

• Team members from the following
organizations and domains of
expertise:

- Acquisition management

- Users

- Developers

- Product support personnel

STATUS CHECKS:

• Is team involvement planned to
ensure that requirements are
understood by designers and
developers?

• Are the project objectives well
defined and documented?

• Does the team have experience in
the application area and in the
project approach?

BEST PRACTICES

61

Representatives must all be committed to the
team and its objectives, or the team will not
survive the product life cycle.

Moving project rework from the construction
phase of a project to the design phase can be
accomplished by JAD.

Structured user acceptance testing helps prevent
errors before a product is fielded.

PRACTICE: ACTIVITY PLANNING

Detailed milestones used by the developer should
be scheduled in evolutionary “inch-pebbles.”*

PRACTICE ESSENTIALS:

• A top-level Gantt chart showing major project
commitments is the timetable for product
delivery to the customer

• A mid-level PERT chart shows milestones to
the end of the project and relationships among
project tasks

• Lowest-level activities represented as inch-
pebbles, because:

- Contingencies can be planned by estimating

negative impacts on the sum of individual

inch-pebbles

- Impact of potential problems of resource

availability or shortages can be analyzed to

determine potential slips

• A detailed PERT chart at the task level, with
each task in the activity network described in

terms of duration, relationships, and
dependence on other tasks being completed on
schedule.

• Short-term or evolutionary planning that
allows:

- Identification of ineffective activities

- Dynamic allocation and reallocation of

resources

- Responsiveness to changes in long-term

goals

PROBLEM ADDRESSED:

Traditional planning creates inaccurate estimates
and significant risks for large, complex projects.

REQUIREMENTS:

• Activities planned around major program
milestones and design reviews

• Similar practices used by both acquirer and
contractor teams to establish hierarchical
reviews to support the different levels and
associated needs of the acquirer and contractor
organization

• Program management involved in the
development process without micro-
management

• Detailed program plans developed for all tasks
including:

- Task description

* See the footnoted AIA comment on p. 39.

- Approach

- Inputs/outputs

- Schedules

- Metrics

- Resources needed

• Hierarchical schedules that provide
information that meets the needs of
all personnel involved in the project,
because the upper-level schedules
are broad-based while the lower
levels are specifically task-based

• Methods for monitoring and
controlling potential slips for tasks
with greatest schedule impact

STATUS CHECKS:

• Is there a hierarchical set of plans
(or at least high-level and detailed
plans) identifying roles and
responsibilities, end products, life
cycle stages, etc.?

• Are individuals associated with the
accomplishment of specific
activities?

• Are Gantt charts updated weekly?

• Are milestones pass/fail?

A project planning tool should be
used when possible.

Early milestones should become more
detailed as data becomes available.
When possible, high-risk items

should be identified and kept off the
critical path through concurrent
scheduling and risk mitigation
activities.

PRACTICE: DATA
REQUIREMENTS

Data requirements should address
programmatic, process, and product
needs, enable effective customer
participation in product development,
and support the product life cycle.

PRACTICE ESSENTIALS:

• Management, planning,
engineering, control, and
maintenance support of the project
data

• Contractor’s processes, methods,
and environment data

• Contractor’s appropriateness for
product support data

• Training necessary to provide full
team access to and usage of the
newly developed software

PROBLEM ADDRESSED:

More data is often considered better
than less data without realizing the
cost of the data and the tradeoffs
between producing data vs. putting
more effort into developing better
quality software.

BEST PRACTICES

63

REQUIREMENTS:

• Address programmatic, process, and product
needs

• Enable effective customer participation in
product development

• Support intelligent tradeoffs during the product
life cycle based upon competitive prices and
open to all prospective competent providers

STATUS CHECKS:

• Are requirements for shared data identified
early and clearly?

• Are project plans scaled to software
development requirements?

BEST PRACTICES

3. PROGRAM VISIBILITY

Visibility into product and project
progress should be available and
understandable to every member of
the project team. To control and
manage software projects, program
managers need readily visible
information that provides status and
trends. Information-based software
program management includes:

• Identification and definition of the
program software issues and
objectives

• Quantitative and qualitative data
collection and analysis

• Evaluation of analysis results and
possible courses of action

• Implementing corrective action

Visibility into the development
processes can be gained by:

• Selecting software and program
metrics that promote project
visibility

• Attending software development
meetings

• Sharing changes with contractor and
customer program management

Measurement provides a software
organization with a means to make
progress visible. Accurate metrics
allow project managers to:

• Measure specific areas of software
product or process

• Derive basis for estimates

• Track project progress

• Monitor software quality

• Analyze defects

• Monitor process improvement

The major indicators of product status
—the Control Panel indicators
(Chapter 2)—should be:

• As accurate as possible

• Updated weekly

• Viewable by all project members

The Control Panel, preferably
computer-generated, should be posted
in high-traffic areas like the cafeteria
and on the way to rest rooms.

Program Visibility Best Practices
include:

• Practical Project-Oriented Software
Measurement Process

• Issue-Driven Measures

• Internal Engineering Analysis
Process

• Effective Communication Structure

65

PRACTICE: PRACTICAL, PROJECT-
ORIENTED SOFTWARE
MEASUREMENT PROCESS

An agreed-upon, documented measurement
process with trained users, and backed by upper-
management commitment, should be designed to
track and communicate measures that promote
visibility of the project.

PRACTICE ESSENTIALS:

• Software measures driven by program-specific
issues and objectives

• Automated tools to process the data generated
by product development, including:

• Data collection

• Data processing and management

• Results analysis

• Reporting

PROBLEM ADDRESSED:

The software measurement process provides the
framework for structured and consistent
identification and evaluation of software program
objectives, status, and issues.

REQUIREMENTS:

• Project visibility

• Appropriate and accurate measurements

• Committed backing from upper management

• Agreement by acquirer and contractor

• Clear and current documentation

• Collection and analysis of low-level software
data

• Senior management commitment in both the
developer and acquirer organizations

STATUS CHECKS:

• Are measurement results widely used in
organizational decision making, and are they
communicated and accepted outside of the
software development organization?

• Are project reports based on measurable data?

• Does project staff accept, and assist in, data
collection?

• Do both the acquirer and developer have access
to the software measurement data and maintain
independent measurement analysis capabilities?

The acquirer, contractor, and customer should
use the same models and metrics to measure the
same system characteristics.

The software measurement data and subsequent
analysis results must be considered in the context
of other “engineering” information from the
same program.

The software measurement process is applied to
support program planning, development, and
sustaining engineering.

Data from completed projects should be collected
in a database to serve as input for future
projects.

BEST PRACTICES

PRACTICE: ISSUE-DRIVEN
MEASURES

Measures should be based upon
answering a need, question, or issue in
the software project.

PRACTICE ESSENTIALS:

• A goal-driven metric paradigm

• Plans, deltas to plans, and actual
measurements

• Predefined pass/fail criteria

• Modifications from the baseline per
development activity

• Work Breakdown Structure design

• Metrics to:

- Derive the basis for estimate

- Track project progress

- Verify quality levels

- Analyze defects

- Validate Best Practices

PROBLEM ADDRESSED:

Measures that are not driven by
specific project needs appear to be
trivial and, as a result, are not carried
out.

REQUIREMENTS:

• Timely data collection and
processing

• Measurement data characterized as
to source

• Flexible measures for changing
issues and objectives

STATUS CHECKS:

• Are project turnover rates tracked?

• Are collected measures clearly
linked to specific project needs?

• Are the number of on-time quality
gates tracked?

• Are the number of unresolved high
and low risks tracked?

• Is the incidence of requirements
creep tracked?

• Are the number of defects opened
and closed tracked?

The fundamental metrics to help
program managers evaluate the
project are verified progress against
plans, costs, and quality levels.

PRACTICE: INTERNAL
ENGINEERING ANALYSIS
PROCESS

The quantitative and qualitative
output of reviews such as peer reviews,
inspections, and walkthroughs
provides visibility of the project.

67

PRACTICE ESSENTIALS:

• Clearly defined entry and exit criteria for each
activity

• Predefined, documented metrics

• A purpose focused on a well-defined scope of
technical or management issues and objectives

• A common and well-defined documentation
and reporting structure for implementing
activities

PROBLEM ADDRESSED:

It is difficult to control a project if you can’t
assess its goals or progress toward them. The
results of inspections and reviews provide
significant visibility into the status of the project.

REQUIREMENTS:

• Measurement program to capture data

• Use of reviews and inspections

• Project structure that ensures data collection
feeds the measurement process

• Output of reviews and inspections is tracked
and reported for collection

• Identified problems from reviews and
inspections are placed under configuration
control to ensure completion

STATUS CHECKS:

• Are metrics used to gauge the effectiveness of
formal inspections, walkthroughs, and reviews?

• Are the results of inspections and walkthroughs
used to estimate or predict the level of quality
in the product?

• Is the output of reviews and inspections tracked
and reported for collection?

• Are problems that are identified in reviews and
inspections placed under configuration control
to ensure completion?

• Are inspections conducted by qualified staff
sufficiently knowledgeable to assess quality?

Data analysis must have a clear goal in order to
obtain the desired information, not necessarily
the desired results.

PRACTICE: EFFECTIVE
COMMUNICATION STRUCTURE

Effective communication means open
communication that gives the development team,
management, and the client easy access to project
status and information.

PRACTICE ESSENTIALS:

• Technical Interchange Meetings (TIMs)

• Program Management Reviews (PMRs)

• Management Status Reviews (MSRs)

• Technical Working Group Meetings (TWGMs)

• Event-driven baseline/milestone reviews

• Independent Verification and Validation
(IV&V) processes

• Software product and process
quality and compliance audits

• Software product prototypes and
demonstrations

• Groupware, or collaboration
software, to include:

- On-line meeting arrangers

- On-line bulletin board services,
e-mail lists for memos, minutes,
and messages

- Desktop publishing with
automated templates for software
engineers who do not like to write

- An on-line reference library with
divisions for technical, business,
and marketing articles, or
references to their whereabouts

PROBLEM ADDRESSED:

As the project grows, an effective
communication structure must keep
pace with the need for information
flow.

REQUIREMENTS:

• An organization in which all staff
understand their assigned roles, job
responsibilities, and reporting
commitments

• Meetings that act as tools for project
reporting

• An automated reporting system that
indicates status of the project and
the basis for those indications

STATUS CHECKS:

• Are meetings held regularly and
documented concisely?

• Have the acquirers and the
developers agreed on current
requirements?

• Are project members up to date with
project and product goals?

• Are members of the project, top to
bottom, plugged into an electronic
communication network?

BEST PRACTICES

69

4. PROGRAM CONTROL

Software management program control requires:

• Planning

• Executing to the current plan

• Incorporating changes to the plan and project

• Meeting product resource and quality goals

• Managing change control

• Coordinating group and individual efforts

• Ensuring adequate quality checks to promote
high software quality

Program control activities underlie the software
development process, affect software quality, and
include:

• Quality assurance

• Testing and evaluation

• Configuration Management

Quality gates at key points in the development
process are used to monitor and ensure the
quality and integrity of products. Quality gates
include:

• Peer reviews

• Inspections

• Walkthroughs

• Structured project audits

Poor program control shows up in low quality,
low productivity, low user satisfaction, cost
overruns, long schedules or missed milestones.

Program Control Best Practices include:

• Test Methodology

• Regression Testing

• Computer-Aided Software Testing

• Error Source Location

• Independent Verification and Validation
(IV&V)

• Quality Gate Completion Criteria

• Configuration Management Coverage

• Requirements Change Management

• Baseline Methodology

• Technical Quality Assurance

PRACTICE: TEST
METHODOLOGY

A test approach that is tailored to, and
consistent with, the development
methodologies provides a traceable
and structured approach to verifying
requirements and quantifiable
performance.

PRACTICE ESSENTIALS:

• Assurance that requirements and
criteria are testable through design,
coding, and test

• User, tester, and requirements
developer involvement

• Consistency throughout the project

• Test methodology reflected in:

- Task descriptions

- Test plan

- Data collection plan

- Analysis methodology

- Reports

- Test requirements correlation
matrix

- Other development methodologies

PROBLEM ADDRESSED:

Test problems are caused by a lack of

testable criteria, by tests that cannot
be structured only as a final check,
and by inconsistent testing.

REQUIREMENTS:

• A test methodology tailored to the
project size and needs

• Professional testing/quality
assurance staff

• A definitive strategy for software
testing as part of the organization’s
framework

STATUS CHECKS:

• Is the test methodology agreed to by
users, testers, and requirements
developers?

• Is test coverage adequate for risk
handling?

• Are test methodology meetings held
regularly, and documented clearly
and briefly?

• Are tests linked to, or traced to,
requirements?

Test methodologies should be
consistent with the set of
development methodologies so that
information can serve as data for
other automated systems.

BEST PRACTICES

71

PRACTICE: REGRESSION TESTING

Regression testing must be conducted to find any
new defects following test correction.

PRACTICE ESSENTIALS:

• A set of test cases that will ensure problems
have been fixed

• No new defects introduced when fixing old
defects

PROBLEM ADDRESSED:

Inadequate regression testing results in damage
to previously operable functions and capabilities.

REQUIREMENTS:

• Computer-aided regression tools that:

- Automate the execution, management, and
verification of the test suites

- Can capture and play back all events that
occur during user sessions

• Libraries of error-free, effective, reusable
regression test cases for projects with multiple
releases, placed under technical and
management control

STATUS CHECKS:

• How does regression testing ensure that defect
removal was successful and no new defects were
created?

• How are test case suites for regression testing
determined?

• What procedures ensure that the appropriate
amount of regression testing is performed?

All software changes that have an increased
likelihood of secondary failure, fault or error
introduction, including assembly languages,
patches and conditional compilations, need
retesting.

PRACTICE: COMPUTER-AIDED
SOFTWARE TESTING

Computer-aided software testing combines
proven testing design, development, and
management practices with advanced digitized
testing tools.

PRACTICE ESSENTIALS:

• A test plan that is compatible with the
development schedule

• Clearly defined methodology for assessment
and evaluation

• Test coverage for the entire project

• Quantification of functional and technical
project risks

• Definition of the test population

• Definition of testing metrics

• Repeatable testing practices that reduce the
subjective nature of results and shorten retest
time

BEST PRACTICES

PROBLEM ADDRESSED:

Testing software is very time- and
labor-intensive.

REQUIREMENTS:

• Knowledgeable personnel

• Investment in digitized testing tools

• Tools for measuring defect potential

STATUS CHECKS:

• Are tools used to automate testing
where possible?

• Is there adequate evidence that
automated tools test what they are
designed to test?

Computers will test only what they
are instructed to test, and will
analyze results according to the
selected algorithm.

Inadequate use of automated tools
for software quality checks is
associated with a number of
software risks such as cost overrun
and missed schedules.

PRACTICE: ERROR SOURCE
LOCATION

Techniques for identifying the source
of errors should be utilized.

PRACTICE ESSENTIALS:

• Designing the system for testability

• Designing a comprehensive test
plan, including:

- What to test (you cannot test
everything)

- How to recognize an error

- How to track tests results

- How to deal with software changes

- How to deal with test plan
changes

- Configuration Management
version control

- Error tracing to the module level

• Designing a test suite that includes:

- Repeatable test cases

- Kiviat charts for quality thresholds

- Metric analyzers to focus on
complex or undertested modules

- Regression tests for software
changes

- Cyclic or random testing

- Stress-load testing

- Defect causal analysis

- Path coverage for critical modules

73

PROBLEM ADDRESSED:

Unless techniques provide accurate information
about error source locations, it is not possible to
make the correct fixes.

REQUIREMENTS:

• Multiple discovery techniques, including
inspections, reviews, tests, automated error-
locator tool and training in its use

STATUS CHECKS:

• Can errors be tracked from discovery to
disposal?

• Are errors prioritized according to user
requirements?

PRACTICE: INDEPENDENT
VERIFICATION AND VALIDATION
(IV&V)

Objective, unbiased software verification and
validation should be conducted by an
independent agent.

PRACTICE ESSENTIALS:

• Analysis of program requirements

• Analysis of program design

• Analysis of program code

• Program testing

• Development and/or use of automated tools

• Technical evaluation

PROBLEM ADDRESSED:

• Late identification of software errors

• Poor software quality

• Lack of management visibility into the
development process

• Inability to control schedule slips and cost
overruns

• Lack of effective risk management
methodology

• Inadequate systems integration planning

REQUIREMENTS:

• Independent testing and evaluation of the
technical acceptability of the software in terms
of:

- Operational requirements

- Readiness of software system for its intended
use

- Integrity of the completed system for its
mission

• An independent set of test tools and
simulations

• An objective assessment of the correctness of
the development team’s solution at each phase
of design

• Independent tests, tools, and simulations to
confirm performance of the software against
the specified performance

BEST PRACTICES

• Comparisons with development
organization of errors vs. time

STATUS CHECKS:

• Are test specifications, designs,
cases, and reports produced?

• Are metrics on defect data analyzed
to enable product improvements?

If necessary, verification and
validation can be functionally
independent, organizationally
independent, or independent
through program control.

PRACTICE: QUALITY GATE
COMPLETION CRITERIA

For each quality gate identified,
criteria should be developed that
indicate successful completion of the
gate.

PRACTICE ESSENTIALS:

• Quality gate completion criteria for
inspections, walkthroughs, reviews,
tests, requirements, design, code,
and documentation

• Process standards

• Product standards

• Historical data

• Limits

• Corrective action requests promptly
answered

• Real-time feedback on development
process adherence

PROBLEM ADDRESSED:

Without well-defined completion
criteria, quality assurance is forced to
catch up with defect detection during
later phases of the program, which is
inefficient and costly.

REQUIREMENTS:

• User-developer teams to agree on
completion quality

• Support from upper management

STATUS CHECKS:

• Are there evaluation standards for
all engineering data products at each
quality gate?

• Has a quality-level threshold been
established that all products must
meet or absolutely be repeated?

• Is a set of quality inspections in
place to assess the products and
process attributes of the software,
and is it effective?

• Are unambiguous quality criteria or
predefined performance standards
established for each product or
deliverable?

75

• Are quality gates integrated into the project
such that they check product quality at discrete
points in the project infrastructure just prior to
general use?

Samples should be taken randomly from the
design, code, and documentation to determine
whether the product passed the last gate with an
excessive amount of defects. If so, the product
should be returned to the previous process.

Criteria should be measurable, simple, and
pass/fail.

PRACTICE: CONFIGURATION
MANAGEMENT COVERAGE

Configuration Management (CM) applied
effectively throughout the program prevents
uncontrolled, uncoordinated changes to shared
project information.

PRACTICE ESSENTIALS:

• Identification of all data

• Documentation internal and external to the
project

• Monitoring standards and procedures

• Evaluation of the status and consistency of all
shared project information

PROBLEM ADDRESSED:

Lack of effective change control increases the
number of defects and amount of rework
required during the project.

REQUIREMENTS:

• CM applied to requirements,
specifications, design documents, and code,
including:

- Version identifiers

- Delta identifiers

- Derivation records

• Automated problem tracking and CM tools to
help maintain accurate records of:

- Proposed changes

- Ownership

- Test results

- Implemented changes

• Three boards required:

- Requirements Review Board

- Engineering Review Board

- Configuration Control Board or
Change Review Board

STATUS CHECKS:

• Are review boards defining and enforcing CM
procedures?

• Is it possible to trace a defect from first report
to final disposal?

Few people like the administration of CM, but
all must cooperate to make CM work.

BEST PRACTICES

PRACTICE: REQUIREMENTS
CHANGE MANAGEMENT

A requirements management process
supports the definition, identification,
allocation, management, and control
of all project requirements.
Requirements must be satisfied and
proposed changes evaluated for cost,
schedule, and effects.

PRACTICE ESSENTIALS:

• Sufficient understanding of the need
for control by team members and
customers

• Rigorous configuration control of
requirements to the lowest possible
level

• Appropriate mapping of
re q u i rements to Configuration Items
(C I s) and development activities

• A process that manages and controls
requirements analysis, definition,
tracing, and maintenance

PROBLEM ADDRESSED:

Loosely controlled requirements cause
budget overruns and schedule delays.

REQUIREMENTS:

• Experienced personnel

• Computer support tools to maintain
the requirements and to check for
consistency

STATUS CHECKS:

• Are baselines updated as changes are
made?

• Are project management and control
procedures fully documented and
well integrated into the
development life cycle?

• Do requirements undergo formal
change control, including
prioritization of proposed changes,
authorization for changes, and issue
control of requirements documents?

Over the course of development,
users’ needs change.

To minimize damage to the software
and schedule, select effective
methods, tools, and approaches for
managing requirements growth.

PRACTICE: BASELINE
METHODOLOGY

Prior to beginning system definition, a
methodology to establish a program
baseline should be agreed to,
approved, published, and followed.

PRACTICE ESSENTIALS:

• A user and supplier agreed-upon
Initial Operation Capability (IOC)
description

• Clear definitions of the program
baselines throughout the project,
and how each is to be developed,
approved, recorded, changed, and
measured

77

• Methods based on project requirements

• Consistency with other project tools

• Criteria to evaluate effectiveness

• Established as part of the culture

PROBLEM ADDRESSED:

Unrealistic program baselines drive project
schedules, costs, and performance requirements
astray.

REQUIREMENTS:

• Compatible with Configuration Management
software

• Domain experts

• Product baseline, which describes the software
in terms of function, performance, and
operation

• Functional baseline, which is established after a
successful requirements review

• Allocated baselines, which are established at the
end of preliminary, or architectural, design

STATUS CHECKS:

• Have formal baselines been established after
formal reviews?

• Are formal hand-off procedures established for
CM baselines and responsibilities?

• Are standards in place for documentation
included in the formal baseline?

Valid program baselines cannot be established
without an understanding of the associated
software on the project and the user and
acceptance requirements.

PRACTICE: TECHNICAL QUALITY
ASSURANCE

Projects need technical quality assurance, not
format-checking quality assurance.

PRACTICE ESSENTIALS:

• People who are assigned quality assurance jobs
in alternation with the sexier design jobs, and
who are treated as value-added members of the
development team

PROBLEM ADDRESSED:

Too often, quality assurance personnel on DoD
projects serve as format checkers rather than
performing a real technical role.

REQUIREMENTS:

• Organizational freedom but, as provided in
MIL-STD-498, not necessarily organizational
independence that historically leads to
adversarial organizations

• Well-trained and well-paid personnel

• Government recognition of the need for quality
assurance role change

STATUS CHECKS:

• Are reliability models equipped with
defect tracking to predict the latent
defects in the software?

• Are lower bounds defined for defect
detection efficiency?

• Have conditional acceptance criteria
been defined?

• Are the planned objective quality
levels for the software consistent
with the planned usage or mission of
the software?

• Are procedures in place to assess the
quality of deliverables before they
are placed under configuration
control?

Quality assurance should be able to
show one-to-one correspondence
between organizational activities
and deliverable/product quality
improvement.

Active quality assurance teams
typically require about five percent
of the staff of the group they
support. Tasks performed include:

• Predicting defect potential

• Predicting defect removal
efficiency

• Predicting quality levels of
software

• Measuring defect numbers,
severity, etc.

• Assisting in selecting defect
removal techniques

• Performing tests and validating
results performed by others

• Measuring and calibrating defect
removal efficiency

BEST PRACTICES

79

5. ENGINEERING PRACTICES AND CULTURE

Good software engineering is both an art and a
craft. Software engineering art makes software
that solves a problem better than a previous way.
Software engineering craft evolves continuously
as programming techniques move from
structured to object-oriented models, iterative
phases complicate the development life cycle
model, and new technologies are built and used.

Approaches to software development include:

• Phased design in which new tasks don’t begin
until prior tasks finish

• The release, or version, approach that delivers
a product in which each additional increment
is a semi-independent program

• The evolutionary approach, that takes
advantage of the fact that, as more software is
written, more and better ways to write
software evolve. The evolutionary approach
allows software coding to begin with a minimal
number of firm requirements, and includes:

- User orientation

- More, faster iterations of analysis, design,
build, test, fix, and retest cycles

- Stress on definition and measurement of
objectives

- Multiple system attributes

- Use of an existing system to start

Software development engineering needs include:

• Better programmer productivity

• Lower software maintenance costs

• Personnel to use new programming capabilities

• CASE tools in production environments

• Trained programmers, technicians, and users

• Automated design and test systems, including:

- Interface builders

- Software development workbench

- Configuration Management system

- Defect tracking system

- Dynamic modeling and simulation

- Integrated Computer-Aided Software
Engineering (I-CASE)

- Graphical User Interfaces (GUIs)

- Interoperability with other software

- Software portability across platforms

- Distributed processing

Engineering Practices and Culture Best Practices
include:

• Include User in a Multidisciplined
Requirements Support Team

• Encourage Compatible Analysis and Design
Methods

• Encourage Software Architecture Definition
and Maintenance

• Encourage Requirements Engineering Process
that Includes Use of Prototypes, Models, and
Simulations

• Encourage Proactive Change
Impact Analysis

• Plan for Domain Engineering in
Acquisitions

• Encourage Use of Clean Room
Techniques

• Tailor Engineering Practices to
Projects

• Encourage Use of Software
Development Standards such as
MIL-STD-498

• Assess Organizational Effectiveness

BEST PRACTICES

81

PRACTICE: INCLUDE USER IN A
MULTIDISCIPLINED REQUIREMENTS
SUPPORT TEAM

A multidisciplined requirements definition
support team should translate initial and evolving
user needs into clear, concise, and complete
system requirements.

PRACTICE ESSENTIALS:

• Team members from the following
organizations and domains of expertise:

- User command

- Procuring organization

- Support organization

- Knowledgeable users, particularly with
domain knowledge of the proposed system

- Testers

- Contractors

- Developers after contract award

PROBLEM ADDRESSED:

Inaccurate or incomplete requirements definition
is often the result of insufficient user
understanding and contribution.

REQUIREMENTS:

• User involvement through requirements
evolution

• Goal to make sure that what is delivered meets
the user’s needs

• Service in an advisory capacity to the program
office

• A process to assure consolidated user inputs to
the team

STATUS CHECKS:

• Is user involvement planned to help ensure that
designer’s and developer’s requirements are
understood by staff?

• Are project objectives and customer restraints
well defined and documented?

• Are all relevant stakeholders in the
requirements document considered (designers,
testers, customers, technical authors,
management, and marketing)?

• Are customers educated in the limitations of
computer solutions?

PRACTICE: ENCOURAGE COMPATIBLE
ANALYSIS AND DESIGN METHODS

Analysis and design methods should be based on
the project’s domain area, application area, and
desired output design model.

PRACTICE ESSENTIALS:

• A model with the following characteristics:

- Resilient to change

- Extensible

- Maintainable

- Reliable

- Verifiable

PROBLEM ADDRESSED:

Methods often don’t take into account
the particularities of the project and
product.

REQUIREMENTS:

• Methods suitable to the domain area
(signal processing, combat direction
systems, communications systems,
information systems, etc.)

• Methods suitable to the application
area (real-time distributed
processing, concurrent processing,
etc.)

• Methods that enhance clarity of the
desired software architecture

• Design model software components
that closely resemble the entities of
the problem domain

• Easy-to-understand design model

• Supported by an Integrated
Computer-Aided Software
Engineering (I-CASE) system

STATUS CHECKS:

• Are the development teams trained
in selected analysis and design
methods?

• Are the methods for different life
cycle activities compatible?

• Are the methods adequate for the

specific domain and application
area?

• How are system and software
architectural goals supported?

Methods support clear transitions
from one development activity to the
next.

PRACTICE: ENCOURAGE
SOFTWARE ARCHITECTURE
DEFINITION AND
MAINTENANCE

A software-intensive system requires
early definition of the software
architecture that is consistent with
operational scenarios and maintenance
throughout development.

PRACTICE ESSENTIALS:

• Standards-based design built over a
standards-based, service-layer model
such as the Technical Architecture
Framework for Information
Management (TAFIM)

• Clear definition of the software
architecture, preferably executable

• Software system functionality
mapped to software system
components

• Clear definition of relationships
among components (interfaces,
protocols)

BEST PRACTICES

• Rules for component composition (constraints),
execution model (data and control flows), and
clock

• User-operational scenarios

• Compatibility with currently operational
systems

PROBLEM ADDRESSED:

Systems without clear and validated architecture
lack flexibility to readily adapt to changing
requirements and take advantage of reuse/COTS.

REQUIREMENTS:

• Rationale for design decisions

• Validation of the architecture by peer and
expert review, including function, structure,
and behavior

• Discussion of stability of the architecture
through vendor updates

• A process for maintaining currency in
architecture documentation

STATUS CHECKS:

• Is the software system architecture required as
part of the response to the RFP?

• Is the software system architecture consistent
with domain or product-line architectures?

• Are there plans to validate the software system
architecture with the users?

• Is there a process in place to manage changes to

the software system architecture and design
during implementation?

It is reasonable to require bidders to specify the
software system architecture and its
maintenance in their proposals.

System architecture should be defined and
approved early, and updated regularly to reflect
changing conditions.

Deviations from the standard should be
approved at the correct level, documented, and
communicated to the domain or product-line
manager as a recommended change.

PRACTICE: ENCOURAGE
REQUIREMENTS ENGINEERING
PROCESS THAT INCLUDES USE OF
PROTOTYPES, MODELS, AND
SIMULATIONS

An adequate requirements engineering process
includes the use of prototyping, modeling, and
simulation to define and clarify user
requirements, and to validate implementation
practicality.

PRACTICE ESSENTIALS:

• Rapid development of representation of a
system characteristic including:

- Physical structure of the system

- Visible system capabilities offered by external
interfaces

- Internal constituent capabilities necessary to
perform the required operations

83

- System behavior

- Conditions under which the
functionality is offered or denied

• Modeling to guide the product
development by synchronizing and
focusing parallel development teams
on simulating product reaction
against real-world conditions,
validating product requirements,
and simulating product functionality

PROBLEM ADDRESSED:

Project cost overruns, schedule
slippage, and compromised quality can
be attributed to immature or
improperly defined user and system
requirements.

REQUIREMENTS:

• Clearly documented user
requirements

• Validated product implementation
plans

• Prototyping and modeling tools

• Updates and refinement over time

STATUS CHECKS:

• Is a customer representative and
user group team defined with
authority to make specific
requirements decisions?

• Are there adequate provisions

ensuring that the requirements are
implemented in the design?

• Have functional and performance
requirements been captured in a
technically precise way?

• Are requirements reviewed for
accuracy, consistency, and
completeness?

• Are the system qualities like safety,
security, performance, usability,
learning requirements, and
portability fully expressed?

• Are requirements prioritized, and is
the rationale for the prioritization
documented?

Prototypes do not eliminate the need
for formal metrics and inspections
on the project.

A prototype can deliver key
components of the system, but is
seldom more than 20 percent of the
completed system; that’s where the
simulation comes in.

Prototyping has traditionally been a
part of software development but,
under evolutionary development,
prototyping becomes an essential
initial activity rather than throw-
away demonstration.

Prototypes can help designers find
the difficult parts of the system
sooner rather than later.

BEST PRACTICES

85

A weighted average of multiple models produces
an estimate that more precisely represents the
project than the results of any one model.

PRACTICE: ENCOURAGE PROACTIVE
CHANGE IMPACT ANALYSIS

Change impact analysis should be proactive
rather than reactive.

PRACTICE ESSENTIALS:

• A change implementation strategy, including
testing metrics and validation criteria

• Processes to cover changes in threats,
requirements, functionality, algorithms,
interfaces, and hardware

• Externally mandated and internally generated
changes

PROBLEM ADDRESSED:

The developer needs encouragement to
implement change management, including
prediction, impact analysis, planning, and results
tracking.

REQUIREMENTS:

• Plans for implementation of an approved
change within a systems engineering discipline.

STATUS CHECKS:

• Are procedures in place to assess the
operational, engineering, and product impacts
of all planned changes before they are made?

• Is the impact to software of proposed system-
level changes routinely addressed?

Metrics serve to help make decisions about
probable and possible changes.

PRACTICE: PLAN FOR DOMAIN
ENGINEERING IN ACQUISITIONS

Domain engineering expertise is a major
consideration in acquisition strategy options.

Domain engineering is a complex process of
analyzing and modeling a domain, designing and
modeling a generic solution architecture for a
product line within that domain, implementing
and leveraging reusable components of that
architecture, and maintaining and updating the
domain, architecture, and implementation
models.

PRACTICE ESSENTIALS:

• Domain analysis, including:

- An underlying theory and model

- Analyzing a domain according to the model
and reuse of systems

- Use of development histories as data for
management systems

- A set of work products that approximates a
specific domain or adapts to a particular
organization

• Domain design, including:

- A Domain-Specific Software Architecture
(DSSA) that specifies components,

interfaces, and rules to compose
systems

- Rationale for component selections

• Domain implementation of reusable
software components that will fit
the DSSA, use of components built
for another system build on DSSA,
and ensuring the reusability of
those components

• Domain maintenance, including:
correcting and enhancing domain
assets (model, DSSA, and reusable
components), and experience
(positive or negative) with
domain assets for support
systems development

PROBLEM ADDRESSED:

Lack of an agreed-upon basis for
developing sets of related systems that
incorporate systematic reuse of COTS
and other software assets causes
excessive cost, schedule delay, and
poor quality.

REQUIREMENTS:

• Stable product line for valid domain
engineering use

• Sufficient number of systems built in
the domain to justify development of
domain assets

• Access to personnel to provide
domain expertise

STATUS CHECKS:

• How is the domain-specific
approach to system acquisition being
pursued?

• Has return-on-investment analysis
been performed on candidate
domain engineering investments?

• Is funding available that could be
targeted to domain engineering
activities, either before, as a part of,
or concurrent with, one or more
specific system acquisitions?

PRACTICE: ENCOURAGE USE
OF CLEAN ROOM
TECHNIQUES

The Clean Room process provides a
rigorous engineering discipline within
which software teams can plan, specify,
measure, design, code, test, and certify
software.

PRACTICE ESSENTIALS:

• A specific set of managerial and
technical practices for developing
ultra-high-quality software with
certifiable reliability

• An engineering discipline in which
software developer teams:

- Apply rigorous mathematical
notation to specify, plan, develop,
and verify software

BEST PRACTICES

- Utilize statistical quality assurance for defect
prevention

PROBLEM ADDRESSED:

An undisciplined project environment can
impede the development of high-quality software.

REQUIREMENTS:

• Formal specification and design that rely on
disciplined engineering practices

• Software reliability engineering to measure
software reliability and enforce process
improvement

• Formal verification that compares specifications
with the operating software

• Engineering activities separated into
specification team, development team, and
certification team

STATUS CHECKS:

• Have Clean Room practices been considered
for adoption on the project?

• Has a trade study been conducted to evaluate
and document the advantages and disadvantages
of Clean Room application?

The benefits of Clean Room techniques have thus
far only been realized in limited areas of
software development. Clean Room techniques
have not been proven in such areas as:

• MIS projects

• Object-oriented analysis and design

• Client-server applications

PRACTICE: ENTERPRISE PRACTICES
TAILORED TO PROJECTS

The positive results achieved by commercial
software development can be altered to meet the
needs of government programs. Procedures and
tools must have a supporting infrastructure
within the organization.

PRACTICE ESSENTIALS:

• A library of accepted and tested Best Practices

• The organization’s view of how to develop
and/or acquire software

PROBLEM ADDRESSED:

Too many software-intensive systems are
developed on an ad hoc basis, causing
performance failures, missed schedules, and
budget overruns.

REQUIREMENTS:

• Knowledgeable group of software experts
available to tailor policies, practices, and
procedures

• Rigorous adherence to Best Practices by project
members with encouragement from the project
manager

87

STATUS CHECKS:

• Does the organization identify and
promote its own development Best
Practices?

• Are those organizational practices
specified in a manner to facilitate
project adaptation?

• Are software experts available to
support the adaptation of those
practices?

PRACTICE: ENCOURAGE USE
OF SOFTWARE
DEVELOPMENT STANDARDS
SUCH AS MIL-STD-498

Standards are essential to the stability
of organizations and processes.

PRACTICE ESSENTIALS:

• Detailed requirements for:

- Safety, security, and privacy

- Project planning and management

- Development environment

- System requirements analysis

- System design

- Software requirements analysis

- Software design

- Software coding and unit testing

- Software/hardware integration and
testing

- System acceptance testing

- Software CM

- Software product assurance

- Software quality assurance

- Risk management

PROBLEM ADDRESSED:

When many people, disciplines, and
tools coexist on a large project,
everyone must learn and follow a
common way of doing the same tasks.

REQUIREMENTS:

• The product life cycle definition

• Software development processes

• Reusable software components

STATUS CHECKS:

• Are documents clear at the program
management level?

• Are documents constructed from
templates?

• Is standards definition under the
control of an experienced expert?

Discipline is required to write,
review, and carry out the plan for a
complex software product and, to
that end, MIL-STD-498 is better
than previous standards.

BEST PRACTICES

PRACTICE: ASSESSED
ORGANIZATIONAL EFFECTIVENESS

Key criteria to evaluate both the acquisition
organization and the contractor organization for
organizational effectiveness should be established.

PRACTICE ESSENTIALS:

• Criteria for assessing the acquisition
organization’s effectiveness, including:

- Commitment and acceptance of responsibility

- Accountability

- Simple hierarchy that allows the project
manager to address one chain of authority, to
influence it, and to obtain recourse if needed

- Technical support

- Mechanisms for process improvement

• A model for assessing organizational maturity
such as Software Development Capability
Evaluation (SDCE), AFMC Pamphlet 63-103,
SEI

• Criteria for assessing the contractor’s
organizational effectiveness, including:

- After contract award, a customer/contractor
Integrated Product Team (IPT)

- Evaluation instruments such as the SEI
Software Capabilities Evaluation (SCE) and
the AFMC Pamphlet 63-103

- Evaluations performed by someone with
experience in the specific application area

- Reevaluations performed throughout the
development project

PROBLEM ADDRESSED:

Risk reduction is achieved by selection of a
capable offeror, and early and continued visibility
into capabilities.

REQUIREMENTS:

• A fully capable offeror with the capacity to
develop software consistent with the Request
for Proposal (RFP) requirements

• Early, comprehensive visibility into the offeror’s
proposed capabilities

• Continued visibility into the developer’s actual
implementation after contract award

• Continual productive communication between
the program manager and the contracting
officer

STATUS CHECKS:

• Does the development process provide
smooth transitions of personnel responsibility
and assessment of personnel adequacy as
deliverables move through the development
process?

• Are engineering checks and balances in place to
identify personnel shortfalls before productivity
is adversely affected?

Organizational effectiveness in knowledge-
intensive software development organizations
depends on teams of individuals.

89

6. PROCESS IMPROVEMENT BEST
PRACTICES

Process improvement is in itself a
process that:

• Starts by identifying the strengths
and weaknesses in an organization

• Analyzes the options to capitalize on
strengths and improve weaknesses

• Plans a process improvement
process

• Monitors and reports on results by
improvement plans

Process Improvement Best Practices
include:

• Identifying and Fostering
Sponsorship

• Establishing and Maintaining the
Framework for Process
Improvement

• Assessing and Reassessing an
Organization’s Process Capability

• Developing a Software Process
Improvement Plan

• Institutionalizing the Software
Process Improvement Plan

• Closing the Loop for Software
Process Improvement

BEST PRACTICES

PRACTICE: IDENTIFYING AND
FOSTERING SPONSORSHIP

Project sponsorship ensures successful long-term
process improvement activities.

PRACTICE ESSENTIALS:

• Specific tasks that sponsors must perform to
ensure that the initiative has appropriate
visibility throughout the organization

• Communication of the business reasons for
process improvement throughout the
organization, one-on-one, in small groups, by
department, and company-wide

• Cascading sponsorship through commitment
expressed at all organization levels

PROBLEM ADDRESSED:

The commitment to sponsorship of software
process improvement by program and product
decision makers is often lacking.

REQUIREMENTS:

• Goal setting at every level of the organization

• Scheduled process improvements inspection
including progress reviews, assessments, and
evidence of improvement

• Resources that include but are not limited to:
time, people, dollars, and equipment

• Personnel systems that recognize and reward
behaviors beneficial to the project

STATUS CHECKS:

• Does top management act on feedback about
project conditions?

• Do team leaders act as sponsors for their
teams?

Groups, not individuals, are better recipients to
reward, as championship teamwork is the goal.

Sponsorship should be rewarded.

PRACTICE: ESTABLISHING AND
MAINTAINING THE FRAMEWORK FOR
PROCESS IMPROVEMENT

A software process improvement framework
should be established and maintained for all
software acquisition.

PRACTICE ESSENTIALS:

• Adoption of a model or framework of tailorable
templates for standards, operating procedures,
techniques, tools, and education/training

PROBLEM ADDRESSED:

If an infrastru c t u re for software pro c e s s
i m p rovement is not established within an
o rganization, software process improvement will
not become part of the engineering group culture .

91

REQUIREMENTS:

• Organizational support for a
Software Engineering Process
Group (SEPG) to serve as a focal
point for software process
improvement initiatives

• Official recognition of software
process improvement efforts

• A source of measurement and
feedback

• A provider of training

STATUS CHECKS:

• Is the framework established and
communicated to individuals on
the project?

Process improvement in response
to a problem is too late.

PRACTICE: ASSESSING AND
REASSESSING AN
ORGANIZATION’S PROCESS
CAPABILITY

Organizations must establish a
specific repeatable means to assess
the strengths and weaknesses of
their software development
processes.

PRACTICE ESSENTIALS:

• The reason for assessment (for

example, source selection, the start
of a major process improvement
effort, periodic evaluation)

• Quality models against which the
software development processes
will be evaluated (for example,
ISO 9000, SEI’s CMM, SDCE)

• Methods based on available
resources and their allocation (for
example, CBA-IPI is more
expensive and detailed than SPA,
which is more expensive than a
mini-SPA)

• Bench-marking criteria to evaluate
the organization’s processes

• Determination of progress against
the process improvement action
plan and established relative to the
quality model

PROBLEM ADDRESSED:

Organizations without repeatable
means of identifying current
capabilities cannot identify and
improve problems.

REQUIREMENTS:

• Management’s visible commitment
to act on the findings of the
assessment

• Comparison of software
development practices with

BEST PRACTICES

practices of other organizations in order to
identify and adopt the best-in-class practices

STATUS CHECKS:

• Are periodic assessments of process capability
conducted?

• Are strengths and weaknesses listed?

PRACTICE: DEVELOPING A
SOFTWARE PROCESS IMPROVEMENT
PLAN (SPIP)

A Process Improvement Plan (PIP) should
support business objectives, identify
organizational strengths, and improve
organizational weaknesses.

PRACTICE ESSENTIALS:

• Goals based on business objectives

• Process strength and weakness assessment

• Continued improvements over time

PROBLEM ADDRESSED:

Lack of a carefully thought-out and clearly
documented SPIP results in false starts and
conflicting activities.

REQUIREMENTS:

• Development reviews

• Active senior executive sponsorship

• Short-term goals to highlight early successes

• Visible reviews of periodic progress

STATUS CHECKS:

• Is the business need for the system or
enhancement clear to project personnel?

Plan implementation should be tested in a pilot
program.

PRACTICE: INSTITUTIONALIZING
THE SOFTWARE PROCESS
IMPROVEMENT PLAN

To be effective a Software Process Improvement
Plan (SPIP) must be formally established
throughout the project.

PRACTICE ESSENTIALS:

• Writing the process improvement action plan

• Acting on the process improvement action plan

• Assessing results

PROBLEM ADDRESSED:

Action plans are of no use if they’re only
developed and not effectively carried out.

REQUIREMENTS:

• A high-visibility kickoff

• Empowered software team leaders

• Rewards for process improvement successes

• Organizational awareness and conformance

93

BEST PRACTICES

STATUS CHECKS:

• Are concerned project members
aware of the software process and
its progress?

• Are views of product progress
available and current?

The SPIP is only as good as its
encouragement and enforcement.

PRACTICE: CLOSING THE
LOOP FOR SOFTWARE
PROCESS IMPROVEMENT

Process improvement requires
continuous iterative feedback to all
vested parties.

PRACTICE ESSENTIALS:

• Measurements throughout the
process improvement effort,
including system cycle time,
reassessment results, and training
resources spent as planned

• Feedback on process improvement
progress available to all
participants in the software
improvement effort, including
sponsors, software engineering
process group members, process
engineers, support and steering
committee members, senior
software technologists, and all
practitioners

PROBLEM ADDRESSED:

In the hectic environment of a
software development project, good
practices can get lost in races to
impractical, sometimes impossible,
deadlines.

REQUIREMENTS:

• Maintaining a current process
asset library

STATUS CHECKS:

• What is the status of the highest-
priority Process Improvement
Plan?

Like all communication, feedback
is best when clear and concise.

95

7. SOLICITATION AND CONTRACTING BEST
PRACTICES

Solicitation and contracting goals include:

• Delivering a system that works well in large-
scale software developments

• Aligning government employees’ and taxpayers’
demands for value

• Eliminating wasteful paperwork and outdated
procedures

• Using criteria-based incentives

Solicitation and Contracting Best Practices
include:

• Management of COTS, Reuse, and Emerging
Technologies

• Employing a Customer/Contractor Integrated
Product Team (IPT)

• Use of Periodic Demos

• Utilizing Software Development Capability
Evaluation (SDCE)

PRACTICE: MANAGEMENT
OF COTS, REUSE, AND
EMERGING TECHNOLOGIES

The government/contractor team
should agree to a process that
rewards competence and allows risk
to be managed when Commercial
Off-the-Shelf (COTS) software,
reuse, and other emerging
technologies are to be used on an
impending procurement.

PRACTICE ESSENTIALS:

• Rewards for achieving emerging-
technology goals expressed in fee-
sharing formulas accepted by a
joint customer/contractor team

• Federal Acquisition Regulation
(FAR) clauses that enable use of
emerging technologies

• Risk mitigation approaches that
are compatible with:

- User requirements

- Contractor competition

- Negotiated rights of ownership
and their criteria

PROBLEM ADDRESSED:

The overall goals of COTS, reuse,
and use of other emerging
technologies are to reduce cost
and/or improve quality.

REQUIREMENTS:

• Focus for COTS, reuse, and
emerging technologies on:

- Cost avoidance

- Schedule reduction

- Quality improvement

• Solicitation clauses and contract
terms and conditions with
specifications concerning
emerging technologies

STATUS CHECKS:

• Has the overall project cost been
reduced (although initial cost to
develop reusable assets is higher)?

• Has time to market been reduced
because there are fewer new assets
to build?

• Is quality higher because reusable
assets and COTS are more stable
with fewer errors?

PRACTICE: EMPLOY A
CUSTOMER/CONTRACTOR
INTEGRATED PRODUCT
TEAM

A customer/contractor IPT should
be established and sustained to
improve communication on all
projects, to define the risk issues,
and to define responsibilities
relevant to the identification and

BEST PRACTICES

mitigation of risks that affect cost and
schedule growth.

PRACTICE ESSENTIALS:

• Members who are multifunctional and
experienced

• Alternates to stand in for members who cannot
attend meetings

• Preferred mechanisms of communication
identified and established within the IPT to the
rest of the project organization, and from the
rest of the project organization to the IPT

• A defined charter with goals and responsibilities
clearly stated

• A team for each key program area or risk

PROBLEM ADDRESSED:

Members of different organizations must
compete for resources, which can generate
conflict.

REQUIREMENTS:

• A risk management team that begins pre-
contract award and is maintained throughout
the project

• Prioritized risks associated with equipment,
software, and facilities

STATUS CHECKS:

• Are viewpoints other than the project team’s
involved in the risk assessment process?

• Is the IPT able to conduct an assessment of
progress and risk without additional data,
analysis, cost, or extension of the schedule?

IPT members must be straightforward in
communication of intentions before, during, and
after IPT meetings, and with all functional
areas—no hidden agendas.

PRACTICE: USE OF PERIODIC DEMOS

Periodic demos can reduce risk, especially during
solicitation and procurement phases of a contract.

PRACTICE ESSENTIALS:

• Demonstration of unrealized product functions,
operations, and interfaces

PROBLEM ADDRESSED:

Proposed ideas are more easily evaluated when
they are visible.

REQUIREMENTS:

• To make proposed functions visible

• To show contractor’s ability to use proposed
technologies prior to contract award

STATUS CHECKS:

• Has the proposed technology been successfully
demonstrated in a representative operational
environment?

• Has the proposed technology been successfully
integrated in the evolving program?

97

• Have product functions been
evaluated in a critical item test?

During software development,
risk items identified in the
Request for Proposal (RFP)
should be mitigated through
critical item demo testing.

PRACTICE: UTILIZE
SOFTWARE DEVELOPMENT
CAPABILITY EVALUATION

The Software Development
Capability Evaluation (SDCE)
methodology provides a structured
approach for assessing an
organization’s capability to develop
software for mission-critical
computer resources.

PRACTICE ESSENTIALS:

• Methodology for soliciting a
contractor qualified to develop
software in accordance with
requirements

• Evaluation of contractor’s
technical and management process
to ensure consistent execution at
the highest level possible

PROBLEM ADDRESSED:

Contracts are awarded to bidders
based solely on proposals that, in

many cases, do not provide insight
into the contractor’s actual capability
to develop the specific software
needed for the project.

REQUIREMENTS:

• Professional team with in-depth
experience in software acquisition

• Professional team with experience
in key project domain areas

STATUS CHECKS:

• Is there a commitment to use of
SDCE?

• Is an SDCE team in place?

• Has the SDCE been tailored to
the specific project?

As defined in Air Force Materiel
Command Pamphlet (AFMCP)
663-103, 15 June 1994, SDCE:

• Was developed with industry as
a partner

• Is independent of military and
industry development and
management standards

• Focuses on the specific needs of
the specific acquisition program;
for example, it must be tailored
to meet specific program needs

BEST PRACTICES

FIGURE 6.1 RELATIONSHIP BETWEEN PRINCIPAL BEST PRACTICES AND BEST PRACTICES BY PROJECT MANAGEMENT AREA

• Relies on and encourages use of
offeror’s internal software
development processes

• Requires evidence of past
performance

• Requires no Request for
Proposal levels for source
selection

• Solicits and supports contractual
commitment to the offeror’s
proposed software development
processes

BEST PRACTICES

In the event that a program manager desires additional information, the Network
will provide both source materials and access to experts. We would greatly
appreciate receiving your comments and suggestions (preferably by e-mail).

E-MAIL: BEST@SPMN.COM PHONE: (703) 521-5231 FAX: (703) 521-2603

FIGURE 6.2 RELATIONSHIP BETWEEN CONTROL PANEL GAUGES AND BEST PRACTICES

105

P R O J E C T C A V E A T S

C H A P T E R 7

PROJECT CAV E AT S

The following software management caveats are lessons learned
from software and hardware/software projects gone awry.

1. Don’t expect schedule compression
of 10 percent or more compared with
the statistical norm for similar
projects.

Nominal Expected Time is a
function of total effort expressed in
person months.

2. Don’t justify new technology by the
need for schedule compression.

New technology is any tool or
development method not used before
by the staff and management of the
current project.

3. Don’t force customer-specific
implementation solutions on the
program.

Implementation technology includes
internal design, hardware/software
partitioning, reuse plans, etc.

4. Don’t advocate use of silver bullet
approaches.

A new approach qualifies as a silver
bullet (as described by Frederick
Brooks in his classic essay, “No

Silver Bullet: Essence & Accidence
of Software Engineering”) if it
claims to have a 20 percent or
greater effect on productivity and is
as yet untried by program staff on
projects of the same size and scope as
the one they are about to undertake.

5. Don’t miss an opportunity to move
items that are under external control
off the critical path.

When possible, schedule external
dependencies that are on the critical
path so that their impact on the
project is lessened.

6. Don’t bury all project complexity in
software as opposed to hardware.

During the early stages of project
work, it is tempting to allocate the
portions of the requirement that are
not yet fully understood to software,
which assures that software will
become the critical path problem as
the project moves toward completion.
No function that is incompletely
specified should be allocated to the
software. Hardware/software
partitioning cannot be done
effectively unless the specification is
reasonably complete.

Calendar
Time Scheduled

Nominal
Expected Time

Schedule
Compression
Percentage

= 1.00 - x 100{ }

107

7. Don’t conduct critical system engineering tasks
without sufficient software engineering
expertise.

Hardware/software tradeoffs cannot be
effectively completed with expertise from only
one of the two areas.

8. Don’t expect to achieve an accurate view of
project health from a formal review attended by
a large number of unprepared, active reviewers.

The review process suffers from diminishing
returns when the number of participants goes
much beyond a dozen. All reviewers need to be
prepared in detail to deal with all, or at least
key, parts of the product under review.
Extensive preparation for active participation in
the review should be the entry price for
attendance.

9. Don’t expect to recover from a schedule slip of
10 percent or more without a 10 percent or
greater reduction in software functionality to be
delivered.

Software functionality can be quantified in
terms of Function Points or another
specifications-based metric of system size.
Recovery from significant schedule slip should be
expected only when accompanied by comparable
reduction of system scope resulting in reduced
Function Points.

109

G L O S S A R Y

G L O S S A RY

Abba chart • A graph (named for
Wayne Abba) that is composed of four
different indicators showing trends in
historic and projected efficiency to date.
Also known as the Total Program
Performance Chart.

Acceptance criteria • The list of
requirements that a program or system
must demonstrably meet before
customers accept delivery. Late changes
in acceptance criteria or hidden criteria
derived from explicit criteria cause
problems for software projects.

Acceptance test • A form of testing
in which users exercise software prior to
accepting it for production runs. The
IEEE definition assumes that acceptance
testing will be formal.

Actual cost • The cumulative actual
cost incurred on the project to date.

ACWP • Actual Cost of Work
Performed.

Alpha tests • The first tests of a
product, using real input, when it is still
in an unfinished state. Alpha tests are
usually internal to an organization and
are followed by beta tests.

Architecture • The structure and
interrelation of a system’s components,
including the relation of the interface to
its operational environment.

Audit • An independent review of
product development and process

execution to confirm that they conform
to standards, guidelines, specifications,
and procedures.

BAC • Budget at Completion.

Baseline • A specification or product
that has been reviewed and agreed on,
and that thereafter serves as the basis for
further development. A baseline can be
changed only through change control
procedures.

BCWP • Budgeted Cost of Work
Performed (see Earned Value).

BCWS • Budgeted Cost of Work
Scheduled.

Beta tests • Testing a product in its
intended environment with the results
used for their intended application.

Binary acceptance criteria • A list
of requirements that a deliverable must
completely satisfy before moving on to
the next activity or task.

Budget at Completion (BAC) • The
total original budget for a project, which
is the maximum value on the Control
Panel Earned Value gauge.

Budgeted Cost of Work Scheduled
(BCWS) • The cumulative planned value,
which is the total value of work that was
originally scheduled for completion by the
end of a re p o rting period.

111

CASE (Computer-Aided Software
Engineering) • The industrialization of software
engineering techniques and computer technology to
improve and automate the practice of information
systems development.

Clean Room • A process that uses formal pro g r a m
specification and verification and statistical software
quality assurance to create high-quality software .

Constructive Cost Model (COCOMO) • A
closely related family of software cost estimating
models developed by Dr. Barry Boehm of TRW.

Code complexity • The complexity of software
code, usually affected by factors such as cohesion,
coupling, modularity, and module complexity factors
including SLOC, nested loops, global variables, and
GOTO statements.

Complexity estimate • A numerical prediction
of the probable number of interrelated factors that
cause projects to be viewed as complex. Models that
measure logic, code, and data complexity include the
McCabe cyclomatic and essential complexity
metrics, the NPATH complexity metric, SPQR, and
CHECKPOINT.

Component • The collection of programs and
modules that perform a single, identified technical
or business function. Examples of components
include the scheduler of an operating system or the
parser of a compiler.

Configuration Management (CM) • The
process of identifying and defining the deliverable
product set in a system, controlling the release and
change of these items throughout the system life
cycle, recording and reporting the status of product

items and change requests, and verifying the
completeness and correctness of the product items.

Contingency factor • A reserve amount that
companies add to cost estimates and budgets to
cover unanticipated expenses and that acts as a
buffer against estimating errors. Normal
contingency factors would be 35 percent added to
cost estimates produced during requirements, 25
percent if produced during design, 15 percent if
produced during coding, and 5 percent if produced
during testing.

Cost factors • Parameters that influence the
amount of resources needed to accomplish a job.

Cost overrun • Situation where the actual cost
exceeds the estimated or budgeted amounts on
projects or deliverables.

Cost Performance Index (CPI) • The Control
Panel gauge that shows how efficiently the project
team has turned costs into progress to date.

COTS • Commercial Off-the-Shelf (often used in
reference to software).

Critical path • The set of activities that must be
completed in sequence and on time if the entire
project is to be completed on time.

Cumulative defect removal efficiency •
The percentage of software defects found by all
reviews, inspections, and tests prior to software
delivery compared to all defects found during
development and by users in a fixed time interval,
such as the first year of operation.

Cyclomatic complexity • An aspect
of the McCabe complexity metric that
looks at the control flowgraph of a
program and determines software
complexity based on the minimum
number of paths.

Defect • A problem or “bug” that, if
not removed, could cause a program to
either produce erroneous results or
otherwise fail.

Defect potential • The probable
number of defects from all causes that
will be encountered during the
development and production of a
program or system. Defect potential is
enumerated as the sum of five defect
categories: requirements, design, coding,
documentation, and bad fixes or
secondary defects.

Defect prevention • Technologies
and techniques that minimize the risk of
human error. Defect prevention
techniques include structured analysis and
design, high-level languages, participation
in Joint Application Design sessions, and
reviews and inspections.

Defect removal • Activities that are
aimed at removing defects from software,
including walkthroughs, reviews,
inspections, editing, and all forms of
testing. For military projects, defect
removal is the second most expensive
activity, with paperwork being the most
expensive. A synergistic combination of
defect prevention and defect removal can

yield dramatic improvements in the
quality of delivered software.

Defect removal efficiency • The
number of defects removed by a specific
operation, such as a code inspection,
review, or test phase, compared to the
total number of defects found during
software development and the first year
of operation.

Defect severity • Classification of
defects into categories such as critical,
serious, moderate, cosmetic, or tolerable.
Classification may also be numeric,
ranging from 1 (high severity) to 4 or 5.

Deliverable •A tangible, physical
object that is the output of a software
development task. Examples of
deliverables include requirements
documents, specifications, test cases, and
source code. There are also synthetic
deliverables such as Function Points or
Feature Points.

Design • The tasks associated with
specifying and sketching out the features
and functions of a new application prior
to formal coding.

EAC • Estimate at Completion.

Earned Value (EV) • A means of
evaluating budgetary performance by
relating actual expenditures to technical
achievement as measured by a milestone
accomplishment scheme. EV may be
used interchangeably with BCWP.

G L O S S A RY

Effort • The person-months or person-years of
work by all job classifications on the software
product (design, coding, inspection, testing,
documentation, and supervision).

Embedded software • Software for an
embedded system. An embedded system is integral
to a larger system whose primary purpose is not
computational; for example, a computer system in an
aircraft or a rapid transit system.

Error source location • The backward
exploration of the cause of an error or defect from
point of occurrence to ultimate reason.

Estimate at Completion (EAC) • The
maximum value on the Control Panel Actual Cost
gauge, which represents the current best estimate for
total cost of the project.

Function Point (FP) • A unit of measure of
software size based on owner and user requirements
stated in the requirements specification.

Gantt chart • A chart (named for Henry
Laurence Gantt) that consists of a table of project
task information and a bar chart that graphically
displays project schedule, depicting progress in
relation to time and often used in planning and
tracking a project.

Inch-pebble • The lowest level of an activity
network consisting of a defined pass/fail task that can
be accomplished within a short period of time, such
as two weeks.

Independent Verification and Validation
(IV&V) • Verification and validation of a software
product by a group other than the one that created
or implemented the original design.

Inspections • Visual examinations to detect errors
and standards violations in requirements, design,
code, user documentation, test plans and cases, and
other software development products.

IPTs • Integrated Product Teams.

Interface • The boundary between two programs,
two pieces of hardware, or a computer and its user.

Joint Application Design (JAD) • A defect-
prevention technique determining requirements for
a software project through structural, joint sessions
of users and developers.

Kiviat graph • A multifaceted graphic
re p resentation technique used to display the results of
many changing variables simultaneously. Kiviat graphs
a re used to display pro d u c t i v i t y, quality, and other
t a rgets together. The graph appears as a star-like set
of lines radiating from a central point. This central
point provides the zero point or origin of the lines,
each of which re p resents a norm for a particular metric.

Main software build • A stage in the project
life cycle, following functional design, that begins
with detailed program design and continues through
coding and system testing until the system is
operational.

Manpower buildup • The rate of building up
personnel on a project. This should match the rate
at which the project leaders identify problems and
assign them to the staff.

Maximum development time • The limit
beyond which it is unlikely that a project can be
successfully completed.

113

G L O S S A RY

Metrics • Means by which software
engineers measure and predict aspects of
p rocesses, re s o u rces, and products that are
relevant to the software engineering activity.

Minimum development time •
The limit below which it is impractical to
attempt to develop a system given its size,
level of productivity, and rate of
manpower buildup.

Peer review • A type of review that is
conducted by peers to evaluate a product,
such as a segment of design or unit of
code. Peer reviews may be formal or
informal. Walkthroughs and inspections
are often conducted as peer reviews.

PERT chart • A chart (resembling a
flow chart) in which a box represents each
project task, and a line connecting two
boxes represents the relationship between
two tasks.

Process productivity measure • A
measure, obtained from past projects, of
the effectiveness of an entire project or
organization in developing software.

Product functionality • The number
of Source Lines of Code created. This
value is calculated using models for
estimating size.

Productivity • A measure of the
amount of Source Lines of Code that can
be delivered per person-month.

Program documentation •
All on-line and hard-copy information

supporting the system’s contractual
agreement, design, build, operation, and
maintenance.

Prototyping • A process in which
partial versions of a program are created
to aid in designing the final product.

Quality • The totality of features and
characteristics of a product that bear on
its ability to satisfy given needs.

Quality assurance • All the planned
and systematic actions necessary to pro v i d e
adequate confidence that a product or
s e rvice will satisfy given re q u i rements for
q u a l i t y.

Quality gate • A predefined
completion criterion for a task including
audits, walkthroughs, and inspections,
that provides an assessment of progress,
processes used, and project products.

Rayleigh curve • A roughly bell-
shaped curve that represents the buildup
and decline of staff power, effort, or cost,
followed by a long tail representing staff
power, effort, or cost devoted to
enhancement or maintenance.

Regression testing • S e l e c t i v e
retesting to detect faults introduced during
modification of a system.

Requirements growth • The
increase between baselined and current
documented requirements.

Reuse • The ability to make additional use of
standard parts or components such as reusable code,
design, architectures, and test cases.

Review • An examination (formal or informal) of
the specification, code, or another deliverable from a
software project.

Risk • The probability that a software project will
experience potential hazards that will affect the
schedule or completion of the project.

Risk reserve • Money and time held in reserve
to be used in the event that risks occur.

SAC • Schedule at Completion.

Silver bullet • A single tool or method expected
to significantly improve software productivity.

Size • Delivered, executable SLOCs. Comment
statements or blank lines are excluded from the size.

Slip • The amount of time that a deliverable or
product is late from its originally scheduled date.

Source Line of Code (SLOC) • A physical line
(non-comment, non-blank) of deliverable source
statements.

Stakeholders • People, organizations, and
existing systems that are affected by, or that
influence, the proposed system development or
enhancement, including the customer and users.

To-Complete Performance Index (TCPI) •
The Control Panel gauge that shows the future
projection of the average productivity needed to
complete the project within an estimated budget.

Total quality management • A method of
removing waste by involving everyone in improving
the way things are done. Total quality management
techniques can be applied throughout the company,
and are equally useful in all departments whether
production- or service-oriented.

Voluntary staff turnover • A measurement of
employees the project wants to keep, but who have
chosen to leave.

Walkthrough • A review process in which a
designer or programmer leads one or more
members of the development team through a
segment of design or code that he or she has
written, while the other members ask questions and
make comments about technique, style, possible
errors, violation of development standards, and
other problems.

Work Breakdown Structure (WBS) •
The product- or activity-oriented hierarchy tree
depicting the elements of work that need to be
accomplished in order to deliver an end product to
the customer.

115

117117

A P P E N D I C E S

BEST PRACTICES INITIATIVE BACKGROUND

119

BEST PRACTICES CONTRACTING DOCUMENTAT I O N

121

FOUNDATION FOR SOFTWARE CONTRACTING

Development and Maintenance of Large-Scale Software

PU R P O S E

• To reverse a chronic problem which drives very large cost overruns, schedule slips, and delivers
systems which work poorly at best in large-scale software developments.

• To unleash the full potential of software technology that up to now has been limited by
management problems.

• To eliminate highly wasteful practices and produce real value for taxpayers.

• To align goals of industry and government; to eliminate useless regulations; to emplace
successful software industry practices in the defense software industry.

ME T H O D

• Drive defense software contractors to utilize known best practices, eliminating wasteful activity,
optimizing operations, and leading to productivity gains and substantial overall
cost savings. Some benefits include:

• Reduced documentation

• Reduced re w o r k

• S t reamlined management

• A more reliable product at a lower cost to the taxpayer.

• Revise the contracting payment method to produce overall net cost savings by using
criteria-based contract incentive payments.

• Make DoD software acquisition more competitive by facilitating commercial industry participation.

• Eliminate the burden of specialized government operations and allow company
management to concentrate on delivering a high-quality product.

RE S U LT

• Because total defense costs decrease, and net profits for highly effective companies increase, this
means good news for the best defense software producers, and strong companies for defense.

• Savings over five years, conservatively estimated, range from 10% - 20% of DoD
annual software cost, which was approximately $42 billion in 1994.

PROJECT CONTROL PANEL “ABBA CHART” (GAUGE 6)

123

BEST PRACTICES INITIATIVE CONTRIBUTORS

Ada Pros, Inc.

Aerospace Corporation

Aerospace Industries Association

AIL Systems

Apple Computer

Arizona State University

ASC

Atlantic Systems Guild, Inc.

Auburn University

BDM

Bell Atlantic

Boeing

Borland

CADRE Technologies, Inc.

Ceridian Corporation

Computers & Concepts Associates

Computer Sciences Corporation (CSC)

Coopers & Lybrand

David Maibor Associates

Digicomp Research Corporation

Digital Equipment

Dupont

EDS

Electronic Industries Association

FAA

General Electric

GTE

Harris Corporation

Honeywell, Inc.

Hughes

IBM

ITT

Keane Federal Systems

Kodak

Lockheed Martin Corporation

Logicon

Loral

Martin Marietta

McCabe & Associates

McDonnell Douglas

Participant Organizations

125

Participant Organizations

MCI

Mitre

Mobil Oil

Motorola

NASA

NCR

National Security Industrial Association

Oshkosh Truck Corporation

Pitney Bowes

Predictive Technologies

QSM, Inc.

Rational

Raytheon

Rockwell

SAIC

SEI

Software Productivity Research, Inc.

Software Productivity Solutions, Inc.

Sprint

State Farm Insurance

Sun

Sverdrup Corporation Space

Technologies Applications, Inc.

Tecollote Research, Inc.

Texas Instruments

The Analytic Sciences Corporation

Tracor

Union Pacific Technology

Unisys

United Technologies

University of California at Berkeley

University of Maryland

U.S. Air Force

U.S. Army

U.S. Coast Guard

U.S. Marine Corps

U.S. Navy

Vanguard Research

Westinghouse

BEST PRACTICES INITIATIVE CONTRIBUTORS

I S S U E PA N E L S

■ Carl Hall (Navy/China Lake)
■ CDR Howard Taylor (NSA)
■ Phil Acuff (AMSMI/RD/MG/CT)
■ Norma Stopyra (JLC)
■ Austin Huangfu (DoD) (OT&E)
■ Sherwin Jacobson (DSMC)
■ Debra Martin (Navy-SPAWAR)
■ CAPT Gregor (C41)

■ Brian Koster (NAVAIR) ■ Dario DeAngelis (Logicon)
■ Anna Deeds (NAVSEA/PEO TAD) ■ Jay Bach (Boreland)
■ Frank Sitsi (SEI) ■ Sue Markel (TRW)
■ Jerry Lecroy (MITRE) ■ Tony Hutchings (Digital)
■ Stan Levine (Army/PM CH5) ■ Tom Duggan (Mobil Oil)
■ Tom Conrad (Navy-NUWC) ■ John Travalent (Unisys)
■ Bob Hegland (Army) ■ David Hendrickson
■ Frank Gregory (Army-MLRS (Honeywell)

Proj. Office) ■ Raymond Curts (SWL)
■ Dean Eliott (Navy/China Lake)
■ John Hoyem (Navy/China Lake)
■ Jim Huskins (Air Force)
■ LTC Carlos Galvan (Air Force)
■ George Prosnic (DSMC)
■ LCDR Mike Borowski (COTF)
■ Steve McComas (NAWC)

■ Jack McGarry (Navy/NUWC)
■ COLLarry Sweeney (HQ/AFMC)
■ Ken Kelley (DISA)
■ Bill Agresti (Mitre)
■ Betsy Bailey (IDA)
■ Ed Primm (NSWC/PH/ECO)
■ Harpal Dhama (Mitre-Bedford)
■ Andrew Chruscicki (RL/C3-CB)
■ Norm Schneldwind

(Navy-PG School)
■ Anita Carlton (SEI)
■ Jim Blackwelder

(Navy-NSWC Dahlgren)
■ Jim Bischoff
■ Tony Guido (NASC)

■ Ray Paul (OUSD (A&T) T&E
■ Cindy King (FAA)
■ Larry Baker (DSMC)
■ Ron Green (NASA–Huntsville)
■ CAPT Bruce Freund, USN

(NAVSEA)
■ Bill Brykczynski (IDA)
■ Dr. Luqi (Navy PG School)
■ George Hurlburt (NAWC)
■ Margaret Powell (ASN

[RDA]/NISMC)
■ Luke Campbell (Navy-NATC)
■ George Axiotis (NAVSEA)
■ CAPT Richard Poligala (AFOTEC)
■ MAJ Thornton (MCOTEA)
■ William Farr (NSWC)

■ Jeanne LeFevre (Unisys)
■ Leonard Tripp (Boeing Commercial)
■ Kathy James (CTA)
■ Boris Beizer (Author)
■ Peter Kind (SEI)
■ Tony Schumskas (BDM)
■ Joyce Jakaltis (ASC)
■ Fred Hall (IEI)
■ C.V. Ramamocrthy (UCB)
■ Danny Shoup (Boeing)
■ Pratap Chillakanti (Hewlett-

Packard)

Risk
Management

Planning &
Baselining

Program
Visibility

Program
Control

■ Perry DeWeese (Lockheed Martin
Aeronautical Systems)

■ Patti Shishido (TRW)
■ Greg Farham (Lockheed Martin)
■ Ray Zachary (Loral)
■ Oleh Kostetsky (Predictive Tech)
■ Connie Palmer (McDonnell Douglas)
■ Teri Snyder (Hughes)
■ Wesley Shellenbarger (Unisys)
■ David Swope (Sanders)
■ Richard Law (Lockheed Martin)
■ Richard Fanning (Hughes)

■ Paul Reindollar (Lockheed Martin)
■ David Card (Sps, INC.)
■ Frank McGarry (CSC)
■ Kyle Rone (Loral)
■ Joseph Dean (Tecollote Research Inc.)
■ Deborah DeToma (GTE

Government Systems Corp.)
■ Peter Dyson (Software Productivity

Solutions, Inc.)
■ Edward F. Weller (Motorola)
■ John T. Harding (Software

Technology Transition)
■ Bob Sulgrove (NCR-Dayton)
■ Wendy Shutter (Digicomp Research

Corp)
■ Bob Rova (Hughes)
■ Rick Cooperman (Hughes)

127

I S S U E PA N E L S

Engineering
Practices &
Culture

Process
Improvement

Solicitation &
Contracting

■ Elliott Branch (OASN/RDA)
■ COLRichard Heffner (SAF/AQCI)
■ Bob Schwenk (Army/Dir Info Sys)
■ Joe Sousa (Navy/ASN (RDA) (APIA))
■ Al Selgas (JLC)
■ LT Charles Race (Navy PG School)
■ Ron Larson (PEO-CU)
■ Raj Avula (PEO-TAD)
■ CAPT Bob McArthur (Marine Corps-

MCTSSA)
■ Bill Mounts (OUSD (A&T) (ARA))
■ Bob Finkelman

■ Mike Dyer (Lockheed Martin)
■ David Maibor (David Maibor Assoc.)
■ Bob Mellott
■ Bob Mutchler (General Research Corp)
■ Sam Davis (Lockheed Martin)
■ Art Buchannan (Mitre)
■ Jim Gottfried (SAIC)
■ Jack Allahand (Lockheed Martin)
■ Mike Bennett (Logicon)

■ Rubin Pitts
(Navy-NSWC/Dahlgren)

■ Tara Regan (USA/SSDC)
■ George Robinson (Navy)
■ Mary Lou Urban (Mitre)
■ Mike Rice (NAVSEA)
■ J. Alberto Yepez (Apple)
■ Dennis Rilling (JLC)
■ John Major (Motorola)
■ Lydia Shen (NRAD)
■ Philip Hausler (IBM)
■ CDR Steve Christensen

(PEO-TacAir)
■ Stu Rider (Mobil Oil)
■ Lock Yung (Army/PEO)
■ William Wilder (NAVSEA)

■ Dennis Ahern (Westinghouse)
■ Richard Mitchell (NAWC)
■ Gary Sundberg (Lockheed Martin/

Colorado Springs)
■ Tom Gilb (Author/Norway)
■ Terry Gill (CMRI)
■ Rick Berthiume (TASC)
■ Axel Ahlberg (General Electric)
■ Dick Dye (CTA)
■ Danny Holtzman (Vanguard Research)
■ Pat Pierce (SAIC)
■ Ken Murphy (Rational)
■ Dan DeJohn (Digicomp Research Corp)
■ David Weisman (Unisys)

■ MAJ Paul Zappala (MCTSSA)
■ Jack Fergason (SEI)
■ Mary Ellen Claget (NSA)
■ Beth Springstein (IDA)
■ MAJ George Newberry (AFSAF/AQ)
■ Tom Goodall (NSWC/PHD/ECO)
■ Gary Christle (OUSD (A&T)/API)
■ Don Reifer (DISA)
■ Gary Petersen (AF-STSC)
■ Dave Cashpular (Army)
■ Lyn Dellinger (DSMC)
■ Jim Dobbins (DSMC)
■ Rob LeiBrandt (DAU)

■ Christine Davis (TI)
■ Michael Condry (Sun)
■ Lewis Gray (Ada Pros Inc.)
■ Larry Migdahex (Keane Fed. Sys)
■ Rich Lordahl (Unisys)
■ Jim Chelini (Raytheon)
■ Dave Whitten (TI)
■ Ken Schumate (Hughes)
■ James Collofello (Arizona State Univ.)
■ Lloyd Anderson

(DISA/Honeywell/ICASE)
■ Jack Kramer (IDA)
■ Arthur Pyster (Software Productivity

Consortium)

BEST PRACTICES INITIATIVE CONTRIBUTORS

T H E P R O G R A M M A N A G E R S PA N E L

Dan Fisher Rational

Kathy Hegmann Loral/Manassas

Bob Knickerbocker Lockheed Martin Corporation

Ron Morrison Hughes

Al Whittaker Lockheed Martin Corporation

129

T H E A I R L I E S O F T WA R E C O U N C I L

Victor Basili University of Maryland

Grady Booch Rational

Norm Brown Software Program Managers Network

Peter Chen Chen & Associates, Inc.

Christine Davis Texas Instruments

Tom DeMarco The Atlantic Systems Guild

Mike Dyer Lockheed Martin Corporation

Mike Evans Computers & Concepts Associates

Bill Hetzel Qware

Capers Jones Software Productivity Research, Inc.

Tim Lister The Atlantic Systems Guild

John Manzo 3Com

Lou Mazzucchelli Gerard Klauer Mattison & Co., Inc.

Tom McCabe McCabe & Associates

Frank McGrath Software Focus, Inc.

Roger Pressman R.S. Pressman & Associates, Inc.

Larry Putnam Quantitative Software Management

Howard Rubin Hunter College, CUNY

Ed Yourdon American Programmer

131

B I B L I O G R A P H Y

Air Force Materiel Command Pamphlet
(AFMCP) Software Development Capability
Evaluations, June 1994. Defines a
methodology for assessing an
organization’s capability to develop
software for mission-critical computer
systems.

L.J. Arthur, Rapid Evolutionary
Development, John Wiley & Sons, Inc.,
New York, 1992.

P. Bell, Fast, Furious, Frenzied, and Fun,
Pfeiffer & Company, San Diego, 1994.
Advice and templates for starting up and
controlling new departments.

P. Bell and C. Evans, Mastering
Documentation, John Wiley & Sons, Inc.,
New York, 1989. Templates for project
and product planning and progress
documentation.

B. Boehm, Software Engineering Economics,
Prentice Hall, 1981.

F. P. Brooks, The Mythical Man-Month:
Essays on Software Engineering, Addison-
Wesley, Reading, Massachusetts, 1975. A
classic on software measurement and
control problems by a pioneer in
mainframes and virtual reality.

F. P. Brooks, “No Silver Bullet: Essence
& Accidence of Software Engineering,”
IEEE Computer, Vol. 20, No. 4,
April 1987.

R. X. Cringely, Accidental Empires,
Addison-Wesley Publishing Company,

Inc., New York, 1992. How computer
companies, especially Apple, work, and
don’t.

T. DeMarco and T. Lister, Peopleware,
Dorset House, 1987.

Directions for Defense: Report of the
Commission on Roles and Missions of the
Armed Forces,May 24, 1995.

P. Drucker, Managing for the Future,
Penguin Books, 1992.

K. Ermel, P. Perry, J. Shields, Insiders
Guide to Software Development, Que
Corporation, 1994.

M. Evans, The Software Factory, John
Wiley & Sons, Inc., 1989. The crafts and
approaches involved in managing
software development.

M. Evans, Principles of Productive Software
Management, John Wiley & Sons, 1983.
Basic principles for managing software
systems.

T. Gilb, Principles of Software Engineering
Management, Addison-Wesley Publishing
Company, 1988. Evolutionary design
steps.

G. Gilder, Microcosm, Simon & Schuster,
Inc., 1989.

J. Gleick, Chaos: Making a New Science,
Viking, New York, 1987. A theory that
produces not only great calendar art but a
new way to understand dynamic
processes.

B I B L I O G R A P H Y

133

R. Grady, Practical Software Metrics for Project
Management and Process Improvement, Prentice Hall,
1993. Practical uses of metrics within software
projects.

P. Hall, Great Planning Disasters, University of
California Press, Berkeley, 1980.

W. Humphrey, Managing the Software Process,
Addison-Wesley, 1989. A fundamental book for
software project management.

C. Jones, Applied Software Measurement, McGraw-
Hill, 1991. A fundamental book on measurement.

C. Jones, Assessment and Control of Software Risks,
Yourdon Press, 1994.

C. Jones, Software Measurements of Best-In-Class
Organizations (Draft for Application Development
Trends), 1994. Measures that the best software
producers are trying to achieve.

J. Kawanami, “Re-engineering the Enterprise,” Data
Management Review, March 1995. Workbenches and
the 80/20 development approach.

R.E. Kraut and L.A. Streeter, “Coordination in
Software Development,” Communications of the ACM,
Vol. 38, No. 3, March 1995. Handling the inevitable
problems in software development projects.

B. Laurel, ed., The Art of Human-Computer Interface
Design, Addison-Wesley Publishing Company, Inc.,
Reading, Massachusetts, 1990.

S. McGuire, Debugging the Development Process,
Microsoft Press, 1994. Up-close look at
development projects in the world’s biggest software
company.

M. Norris, P. Rigby, and M. Payne, The Healthy
Software Project: A Guide to Successful Development and
Management, John Wiley & Sons, 1993. An easy-to-
read, practical guide to identifying the status of
software projects.

F. O’Connell, How to Run Successful Projects, Prentice
Hall, 1994. An easy-to-read guide to managing
software projects.

J. Palfreman and D. Swade, The Dream Machine,
BBC Books, London, 1991.

P. Perry and K. Ermel, Insider’s Guide to Software
D e v e l o p m e n t, Que Corporation, 1994. How software
gets developed, and doesn’t, in the commercial world.

W. Poundstone, Prisoner’s Dilemma, Doubleday, New
York, 1992. A quick, easy way to illustrate the value
of teamwork to everyone in an organization.

R. Pressman, A Manager’s Guide to Software
Engineering, McGraw-Hill, 1993. An extensive
reference.

L. Putnam, Measures for Excellence, Reliable Software
on Time and Within Budget, Yourdon Press, 1992. An
extensive model for software estimation.

D. Taylor, Object-Oriented Technology: A Manager’s
Guide,Servio Corporation, Alameda, California. A
short, business-oriented book for program managers
who need to understand the basic benefits and risks
of object orientation.

R. Thomsett, T h i rd Wave Project Management,
Yo u rdon Press Computing Series, 1993. A
handbook for managing complex information systems
in the 1990s.

G.M. Weinberg, Quality Software
Management, Vol. 2, First Order
Measurement, Dorset House Publishing,
1993.

F. Wellman, Software Costing, Prentice
Hall, 1992.

E. Yourdon, Decline and Fall of the
American Programmer, Yourdon Press,
1993.

E. Yourdon, Guerrilla Programmer, Vol. 2,
No. 2, February 1995. Industry news of
interest.

B I B L I O G R A P H Y

135

137

I N D E X

Abba chart, 9, 12, 46, 102-103, 110, 122

Acceptance criteria, 39-40, 57, 78, 110

Acceptance test, 21, 60-61, 88, 110

Activity network, 18-20, 23, 39, 61

Activity planning, 38, 58, 61

Actual Cost of Work Performed
(ACWP), 10-11, 110

Aggregate requirements growth,
102-103

Aggregate schedule overrun, 46,
102-103

Agreement on interfaces, 34, 36, 46,
99-100

Airlie Software Council, 129

ALGOL, 26

Alpha tests, 110

Analysis and specification, 19

Anonymous channel, 21, 40-41

Anonymous channel unresolved warning,
9, 15

Architectural and data design, 19

Architecture, 110

Audit, 43, 68-69, 110

BAC (seeBudget at Completion)

Baseline, 13, 29, 36-39, 43, 59, 66-67, 69,
76-77, 110, 126

Baseline methodology, 69, 76

BCWP (seeBudgeted Cost of Work
Performed)

BCWS (seeBudgeted Cost of Work
Scheduled)

Best Practices, 2, 4, 43, 45, 51, 58, 64, 66,
69, 79, 87-88, 90, 95, 102-103

Beta tests, 110

Binary acceptance criteria, 110

Bi n a ry quality gates, 34, 39-40, 46, 99-100

Budget at Completion (BAC), 10-13,
39-41, 65, 110

Budgeted Cost of Work Performed
(BCWP), 10-11, 38, 110
Budgeted Cost of Work Scheduled
(B CWS), 10

I N D E X

A

B

139

CASE (Co m p u t e r-Aided Software Engineering),
79, 82, 111

Clean Room, 28, 80, 86-87, 111

CMS-2Y, 26

COCOMO (Constructive Cost Model), 111

Code complexity, 111

Code walkthrough, 19

Coding, 19

Commercial estimating tools, 28, 59

Commercial Off-the-Shelf (COTS) software, 83, 86,
96, 111

Completion efficiency, 12

Complexity estimate, 111

Component, 111

Computer-aided software testing, 69, 71

Configuration control tools, 43

Configuration Management (CM), 13, 34, 42-43, 46,
69, 72, 75, 77, 79, 88, 99-100, 111

Contingency factor, 111

Control Panel, 2, 4, 8-15, 39-41, 64, 102-103

Cost factors, 111

Cost model estimate, 38

Cost modeling, 57

Cost overrun, 111

Cost Performance Index (CPI), 11-12, 39, 46,
102-103, 111

Cost-plus contract, 53

COTS (seeCommercial Off-the-Shelf)

CPI (seeCost Performance Index)

Critical dependencies, 22

Critical path, 19-20, 35, 40, 62, 106, 112

Critical path items, 19

Cumulative defect removal efficiency, 111

Cumulative Earned Value, 10-11, 46, 102-103

Cyclomatic complexity, 112

Data requirements, 58, 62

C

D

Defect, 15, 26-28, 37-39, 41-42, 46, 53,
59, 64, 66, 71-72, 74-75, 78-79, 102-103,
112

Defect closure rate, 53

Defect fundamental process deficiencies, 4

Defect origins, 27

Defect potential, 27, 72, 78, 112

Defect prevention, 28, 87, 112

Defect removal, 27, 42, 53, 71, 78, 112

Defect removal efficiency, 26-27, 41-42,
78, 112

Defect severity, 112

Defect tracking against quality targets, 34,
39, 41, 46, 99-100

Deliverable, 18-19, 21-22, 28, 40, 43, 74,
78, 112

Design, 20-21, 23, 27-29, 37-38, 44, 61,
70-71, 73-75, 77, 79, 81-84, 86-88, 106,
112

Design walkthrough, 19

Domain area, 21-23, 81-82, 98

EAC (seeEstimate at Completion)

Earned Value (EV), 10-12, 38-40, 112

Effective communication structure, 64,
67-68

Effort, 113

Elapsed time, 11

Embedded software, 113

Enabling practice, 99-100

Engineering practices and culture, 50, 79,
99-100, 102-103, 127

Error source location, 69, 72-73, 113

Estimate at Completion (EAC), 10-12,
113

Event-driven baseline, 67

Exit criteria, 38, 67

External dependencies, 51, 55-56, 106

External system interfaces, 36

Fixed-rate contract, 52

I N D E X

E

F

Formal inspections, 34, 37-38, 46, 67, 99-100

Formal risk management, 34-35, 46, 99-100

Function Points (FPs), 22, 26, 28-29, 59, 107, 113

Gantt chart, 61-62, 113

Graphical User Interfaces (GUIs), 36, 79

Hierarchical schedules, 62

I-CASE (Integrated Computer-Aided Software
Engineering), 79, 82

Inch-pebble, 28, 38-40, 46, 61, 99-100, 113

Incoming defects rate, 53

Independent Verification and Validation (IV&V), 67,
69, 73, 113

Inspections, 27-28, 66-67, 69, 73-74, 84, 113

Integrated Product Teams (IPTs), 29, 60, 89, 95-97,
113

Integration test, 19

Interface, 36-37, 60, 79, 82, 85-86, 113

Interface design specifications, 21

Internal engineering analysis process, 64-66

IPTs (seeIntegrated Product Teams)

Issue-driven measures, 64, 66

IV&V (seeIndependent Verification and Validation)

J

Joint Application Design (JAD), 27, 29, 60-61, 113

Joint Requirements Planning (JRP), 60

Joint team involvement, 58, 60

Jovial, 26

K

Kiviat graph, 72, 113

L

Life cycle, 43, 54, 61-63, 76, 79, 82, 88

Life cycle stages, 62

Low quality, 53, 69

M

Main software build, 113

141

J

L

K

G

M

I

H

Management reserve, 36, 51-52

Management Status Reviews (MSRs), 67

Manpower buildup, 113

Maximum development time, 113

Metrics-based scheduling, 34, 38-39, 46,
99-100

Metrics, 8, 10, 26-28, 38-39, 41, 50-51,
53, 57-58, 62, 64-67, 71-72, 74, 84-85,
107, 114

Milestone reviews, 67

Milestones, 19, 28, 61-62, 69

Minimum development time, 114

Multidisciplined requirements support
teams, 60, 79, 81

N

New technology, 106

Nominal expected time, 21, 106

O

Object-oriented analysis and design, 44,
87

Overtime hours, 14, 46, 102-103

P

Peer reviews, 37-38, 66, 69, 114

People-aware management accountability,
34, 43, 46, 99-100

PERT chart, 61

Planning, 28, 38-40, 54, 57-62, 65, 69,
73, 85, 88, 99-100, 102-103, 126

PMRs (s e eP rogram Management Reviews)

Preliminary design review, 19

Principal Best Practices, 2, 4, 34, 45, 46,
99-100

Prioritized list of risks, 55

Procedural design, 19

Process improvement, 27, 50, 64, 87, 89,
90-94, 99-100, 102-103, 127

Process productivity measure, 114

Process quality and compliance audits, 68

Product functionality, 84, 113

P roduct prototypes and demonstrations,
6 8

Productivity, 3, 8, 11-12, 14, 30, 39, 45,
51, 59, 69, 79, 89, 106, 114

I N D E X

P

O

N

Program cancellation, 53

Program control, 50, 69, 74, 99-100, 102-103, 126

Program documentation, 26, 29, 114

Program Management Reviews (PMRs), 67

P rogram visibility, 34, 46, 50, 64, 99-100, 102-103,
1 2 6

Project Analyzer, 2, 4, 18

Project caveats, 2, 106-107

Project Control Panel (seeControl Panel)

Project domains, 18, 22

Project estimating tools, 28

Project-oriented software measurement process,
64-65

Project plan, 43, 57, 63, 88

Project planning tools, 28, 62

Project requirements, 4

Prototyping, 28-29, 36, 83-84, 114

Q

Quality, 3, 8, 11, 15, 26-27, 37-40, 43-44, 53, 58-59,
62, 64, 66-69, 72-75, 78, 84, 86-87, 92, 96, 114

Quality assurance, 20, 28, 69-70, 74, 77-78, 87-88,
114

Quality gate, 10, 12-13, 38-40, 46, 66, 69, 74-75,
102-103, 114

Quantitative software estimation/verification, 58-59

Quantitative targets, 2, 4, 26

R

Rayleigh curve, 114

Regression testing, 69, 71, 114

Requirements change management, 69, 76

Requirements growth, 29, 114

Requirements review, 19, 21, 75, 77

Reuse, 83, 85-86, 95-96, 106, 115

Reviews, 27-28, 37-38, 40, 43, 53, 55, 61, 66-67, 69,
74, 77, 91, 93, 115

Risk, 8, 14-15, 18, 20-22, 27-28, 35-36, 38, 40-41,
51-57, 59, 61-62, 66, 70-72, 89, 96-98, 115

Risk assessment, 14, 35, 39, 52, 97

Risk database, 35, 54-55

Risk exposure, 14

Risk identification, 21, 53-54

143

R

Q

Risk identification checklist, 54

Risk impact, 46, 102-103

Risk liability, 46, 102-103

Risk management, 20, 35-36, 41, 50-51,
53-55, 73, 88, 99-100, 102-103, 126

Risk Management Officer, 20

Risk management plan, 36, 53, 55

Risk management process, 35, 55

Risk profile, 36

Risk reserve, 14-15, 26, 28, 35, 52-53,
115

Risk reserve buffer, 35, 52

S

SAC (seeSchedule at Completion)

SCE (seeSoftware Capabilities
Evaluation)

Schedule, 2, 10-14, 18, 20-22, 28, 35,
37-41, 43-44, 51-53, 57, 59, 61-62, 69,
71-73, 76-77, 84, 86-87, 96-97

Schedule at Completion (SAC), 11, 115

Schedule compression, 18, 21, 106

Schedule compression percentage, 18,
21

Schedule slip, 2, 13, 28, 53, 73, 84, 107

SDCE (seeSoftware Development
Capability Evaluation)

Silver bullet, 11, 51, 106, 115

Size, 18, 22, 26, 28, 38, 41, 44, 51, 53,
59, 70, 106-107, 115

Slip, 26, 28, 61-62, 115

SLOC (seeSource Lines of Code)

Software acquisition program
management, 4

Software bugs, 59

Software Capabilities Evaluation (SCE),
89

Software design, 20, 88

Software Development Capability
Evaluation (SDCE), 89, 92, 95, 98, 101

Software functionality, 21, 107

Software Process Improvement Plan
(SPIP), 90, 93-94

Software quality assurance, 28, 88

I N D E X

S

Solicitation and contracting, 50, 95, 99-100, 102-
103, 127

Source Lines of Code (SLOC), 22, 26, 59, 115

SPIP (seeSoftware Process Improvement Plan)

Stakeholders, 60, 81, 115

Structured acceptance test sessions, 60

T

TAFIM (seeTechnical Architecture Framework for
Information Management)

Tasks, 10, 12-13, 18-19, 23, 38, 40, 46, 57, 61-62,
78-79, 88, 91, 102-103, 107

TCPI (seeTo-Complete Performance Index)

Team planning, 57

Technical Architecture Framework for Information
Management (TAFIM), 82

Technical Interchange Meetings (TIMs), 67

Technical quality assurance, 69, 77

Technical Working Group Meetings (TWGMs), 67

Test methodology, 69-70

Test planning, 19

Test procedure, 19

Testing review, 19

Time series analysis, 53

TIMs (seeTechnical Interchange Meetings)

To-Complete Performance Index (TCPI), 11-12, 39,
46, 102-103, 115

Total quality management, 28, 115

Total requirements growth, 26, 29

Total software program documentation, 26

TWGMs (seeTechnical Working Group Meetings)

U

Unit test, 19, 37, 88

User interfaces, 36-37, 79

User product acceptance criteria, 57

User requirements, 20-21, 51-52, 73, 83-84, 96

V

Validation test, 19

Visibility of progress, 40

Voluntary staff turnover, 26, 30, 43-44, 102-103, 115

Voluntary turnover rate, 13-14, 44, 46

V

U

T

W

Walkthroughs, 27-28, 37, 66-67, 69, 74,
115

Warnings, 46, 102-103

Work Breakdown Structure (WBS), 18-
20, 40, 54, 56, 66, 115

W

I N D E X

